Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.41P
To determine
The power required when room and surrounding temperature is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the heat flow between the roof and floor of 4 × 3 m size of a furnace of 4
m × 4 m × 3m size when the roof is at 1200 K and the floor is maintained at 600 K,
with the other surfaces non-absorbing and reradiating. The surface emissivity of the
hotter surface is 0.8 and that of the cooler surface 0.6.
Determine the heat flow between
the roof and floor of 4 x 3 m size
of a furnace of 4 m x 4 m x 3 m
size when the roof is at 1200 K
and the floor is maintained at 600
K, with the other surfaces non
absorbing and reradiating. The
surface emissivity of the hotter
surface is 0.8 and that of the
cooler surface 0.6.
All other solutions are wrong
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8.15 A mercury bath at is to be heated by immersing cylindrical electric heating rods, each 20 cm tall and 2 cm in diameter. Calculate the maximum electric power rating of a typical rod if its maximum surface temperature is .arrow_forwardThree thin sheets of polished aluminum are placed parallel to each other so that the distance between them is very small compared to the size of the sheets. If one of the outer sheets is at 280C and the other outer sheet is at 60C, calculate the temperature of the intermediate sheet and the net rate of heat flow by radiation. Convection can be ignored.arrow_forward1.11 Calculate the heat loss through a glass window 7-mm thick if the inner surface temperature is 20°C and the outer surface temperature is 17°C. Comment on the possible effect of radiation on your answer.arrow_forward
- Determine the power requirement of a soldering iron in which the tip is maintained at 400C. The tip is a cylinder 3 mm in diameter and 10 mm long. The surrounding air temperature is 20C, and the average convection heat transfer coefficient over the tip is 20W/m2K. The tip is highly polished initially, giving it a very low emittance.arrow_forward1.13 If the outer air temperature in Problem is –2°C, calculate the convection heat transfer coefficient between the outer surface of the window and the air, assuming radiation is negligible.arrow_forwardA long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your assumptions.arrow_forward
- A very long semicylindrical furnace has a radius of 2 m. The curved top surface, whose emissivity is 0.75, has built-in radiant heaters that provide a uniform heat flux of 8000 W/m² to the furnace space. The bottom surface is at 150 C and has an emissivity of 0.9. (a) What is the temperature of the curved top surface? (b) What is the rate of heat flow to the bottom surface per meter length of the furnace?arrow_forwardIt is desired to heat the workshop with a stove made of falling cylindrical sheet material with an outer diameter of 400 mm and a height of 1600 mm. The surface temperature of the stove is 217 oC and the radiation emission coefficient is 0.92, the temperature of the workshop surfaces is 12 oC and the ambient temperature of the workshop is 17 oC. Next to the stove, the workshop surface area is very large. From the side surface of the stove to the workshop; a) By transport,b) with radiation Calculate the heat transfer.arrow_forwardA flat-plate solar collector, as shown in Fig. 1, is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has an emissivity and an absorptivity of 0.8. The top surface (* = 0) temperature of the absorber is To = 35 °C, and solar radiat ion is incident on the absorber at 600 W/m? with a surrounding temperature of 0 °C. The convection heat transfer coefficient at the absorber surface as 8 W/m?-K. Assuming constant thermal conductivity and no heat generation in the wall, i express the differential equation and the boundary conditions for steady one- dimensional heat conduct ion through the wall, obtain a relation for the variation of temperature in the wall by solving the differential equation, and ii iii. determine the net heat flux, ġo absorbed by the collector ε, α, Τ. Absorber plate Water tubes Insulation Fig. 1arrow_forward
- 2 inch OD during a visit to a plastic sheet factory 60 m long section of a horizontal steam pipe passes from one end to the other without insulation is observed. While the temperature of the ambient air and its surfaces is 20 °C, the temperature measurements at several points are the average of the exposed surfaces of the steam pipe. indicates that the temperature is 160 °C. It is seen that the outer surface of the pipe is oxidized and The emissivity can be taken as 0.59. According to this; a) Calculate the heat loss in the steam pipe. b) The steam used is produced in a gas furnace operating with an efficiency of 59%. Factory 105500 It pays $1.10 per kJ of natural gas. If it is assumed that the factory works all year (365 days), for this facility Calculate the annual cost of heat losses in the steam pipe.arrow_forwardA tube pipe is heated to a temperature of 150°C with an outside diameter of 12cm and it’s enclosed in a large room of 20°C. Calculate the radiant heat loss per unit length, if the surface emissivity is 0.65.arrow_forwardA double-glazed window assembly consists of two glasses, each 6 mm thick, and an air gap of 6 mm thickness between these glasses. Ignore the radiation heat transfer, calculate the rate of heat transfer occurring on a day when the outside temperature is -5 ° C and the room temperature is 28 ° C. h1 = 15 W / m2K, h2 = 9 W / m2K, kcam = 1.4 W / mK, khava = 0.025 W / mKarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license