Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.60P
To determine
The surface temperature of cable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The heat transfer from a 3 m diameter sphere to a 27 deg C air stream over a time interval of one hour is 4000 kJ. Estimate the surface temperature of the sphere if the heat transfer coefficient is 15 W/m^2K.
Partially-frozen ice cream is being placed in a package before completion of the freezing process. The package has dimensions of 8 cm by 10 cm by 20 cm and is placed in air- blast freezing with convective heat coefficient of 50 W/(m2 K) for freezing. The product temperature is -5°C when placed in the package, and the air temperature is -25°C. The product density is 700 kg/m3, the thermal conductivity (frozen) is 1.2 W/(m K), and the specific heat of the frozen product is 1.9 kJ/(kg K). If the latent heat to be removed during blast freezing is 100 kJ/kg, estimate the freezing time.
Thermal energy generated by the electrical resistance of a 5-mm-diameter and 4-m-long bare cable is dissipated to the surrounding air at 80°C. The voltage drop and the electric current across the cable in steady operation are measured to be 20.0 V and 4.5 A, respectively. Disregarding radiation, estimate the surface temperature of the cable. Evaluate air properties at a film temperature of 100°C and 1 atm pressure.
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An electrical transmission line of 1.2-cm diameter carries a current of 200 amps and has a resistance of 310-4 ohm per meter of length. If the air around this line is at v, determine the surface temperature on a windy day, assuming a wind blows across the line at 33 km/h.arrow_forwardA computer circuit board dissipates 0.1 KW from one side over an area 300 mm by 200 mm. A small turbo fan cools the computer with flow speed of 12 m / s. It is of utmost importance that the circuit board is kept within acceptable temperature range. Using the average Nusselt number relationship Nuav = (0.05Rez08 – 310) Pr3. You are required to calculate: (i) The surface temperature of the board for an air temperature of 30 °c. Assume: Ambient pressure of 1 bar, R = 287 J/ kg K, Cp = 1 kJ / kg K, k = 0.03 W / m K, and u = 2 x 10% kg/m sarrow_forwardCaster oil at 36°C flows over a 6 m long and 1 m wide heated plate at 0.06 m/s. For a surface temperature of 96°C, determine (i) The thermal boundary layer thickness at the end of the plate (ii) The local heat transfer coefficient at the end of the plate.arrow_forward
- A 15 mm 3 15 mm silicon chip is mounted such that the edges are flush in a substrate. The chip dissipates 1.4 W of power uniformly, while air at 20°C (1 atm) with a velocity of 25 m/s is used to cool the upper surface of the chip. If the substrate provides an unheated starting length of 15 mm, determine the surface temperature at the trailing edge of the chip. Evaluate the air properties at 50°Carrow_forward7. Air at 600 K, 1 atm is flowing across a flat plate kept at 300 K with a convection coefficient of 91 W/m2 K. If the Stanton number at this condition of flow is 0.039. what is the velocity of the air? Express your answer in m/s.arrow_forwardThermodynamics problem. A membrane type electrical heater of 20,000 w/m? capacity is sandwiched between an Insulation of 25 mm thickness with thermal conductivity of 0.029 W/m-K and a metal plate with k = 12.6 W/m-K of thickness 15 mm. The convection coefficient is 150 W/m2-K. The surroundings are at 5°C. Determine the surface temperature of the heater and the flow on either side.arrow_forward
- EXTERNAL FORCED CONVECTION A 10-cm-diameter, 30-cm-high cylindrical bottle contains cold water at 38°C. The bottle is placed in windy air at 27°C. The water temperature is measured to be 11°C after 45 min of cooling. Disregarding radiation effects and heat transfer from the top and bottom surfaces, estimate the average wind velocity. Please, I need the solution from fundamental concepts of how the heat flow behaves in the system. That it be answered with theory of the subjectarrow_forwardPravinbhaiarrow_forwardA hot plate 1.2 m wide, 0.35 m high and at 115 0C is exposed to the ambient still air at25 0C. Calculate the following: (i). Average heat transfer coefficient over the surface ofthe plate; (ii) Heat loss from the plate; (iii) Rise in temperature of the air passing throughthe boundary. Properties of air at 70 C temperature are: r = 1.029 Kg/m3; Cp = 1005 J/KgK; K = 0.0267 W/m K; m = 1.866 * 10'5 N- S/mz; Ans: Gr = 27.532*107 (i) h = 5.43 W/m2C; (ii) Q = 410.5W (iii) At = 85.45 Carrow_forward
- Number 3A food product with 73% moisture content in a 7 cm diameter can wants to be frozen. The density of the product is 970 kg/m³, the thermal conductivity is 1.2W/(m K), and the initial freezing temperature is -2.5°C. After 11 hours in the freezing medium -40°C, the product temperature becomes -10°C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder. h= answer in W/(m²K)arrow_forwardOil flow in journal bearing can be approximated as parallel flow between two large plates with one plate moving and the other stationary. Determine the velocity, temperature distributions, the maximum temperature, the rate of heat transfer and the mechanical power wasted in oil. Take properties of oil at 50°C are given to be, k=0.17W/m. K, and u=0.05N.s/m2.arrow_forwardBThe heat transfer from a 2-m-diameter sphere to a 25 °C air stream over a time interval of one hour is 3000 kJ. Estimate the surface temperature of the sphere if the heat transfer coefficient is 10 W/m²K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license