Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.105P
To determine
The convection heat transfer rate per unit length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the thickness of the magnesia insulation necessary to restrict the heat loss to 5 BTU/hr-ft2 through the walls of a furnace having inside and ambient temperatures of 1500 oF and 150 oF, respectively. The furnace wall is ¼ in, steel plate and 3 in refractory lining. Thermal conductivity in BTU/hr –ft-oF are kref = 0.6, ksteel = 26, kmag=0.03
We are using lumped capacitance method for the cooling of a hot
cylindrical tube in winter. One end of the tube is held by a hot piece of
metal which is at 100 C. What will be the temperature at the other end
according to our calculation?
O not sufficient information
O less than 100 C
O equal to 100c
more than 100 C
For the Convective Heat Transfer experiment, describe the difference in the procedures: Natural or FreeConvection and Forced convection. What makes the FORCED convection experiment as FORCED? Explain which, in your consideration should give the higher heat transfer rate? And REASON why? Did your results support your consideration?
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the power requirement of a soldering iron in which the tip is maintained at 400C. The tip is a cylinder 3 mm in diameter and 10 mm long. The surrounding air temperature is 20C, and the average convection heat transfer coefficient over the tip is 20W/m2K. The tip is highly polished initially, giving it a very low emittance.arrow_forward-1. Natural Convection from an Oven Wall. The oven wall in Example 15.5-1 is insu- lated so that the surface temperature is 366.5 K instead of 505.4 K. Calculate the natural convection heat-transfer coefficient and the heat-transfer rate per m of width. Use both Eq. (15.5-4) and the simplified equation. (Note: Radiation is being neglected in this calculation.) Use both SI and English units.arrow_forwardA spherical interplanetary probe of 0.5-m diameter contains electronics that dissipate 150 W. If the probe surface has an emissivity of 0.8 and the probe does not receive radiation from other surfaces, as, for example, from the sun, what is its surface temperature?arrow_forward
- A silicon wafer of diameter D=120 mm. and emissivity of 0.6 is at an initial temperature of Ti 3250C and is allowed to cool in quiescent, ambient air and large surroundings for which Tair Tsur = 350C. What is the rate of cooling from the upper surface of the wafer? Properties of Air: k- 0.0373 W/m.C. v = 32.39*10-6 m2/s, alpha 47.210-6 m2/s Pr 0.686 B- 1/Tf = 0.0022 K-1. Select one: O a. 344 W O b. 53 W O c. 627 W O d. 86 Warrow_forwardEither free or forced convection is good by considering an example. please explainarrow_forwardQuestion No. 1 Gaseous carbon dioxide at 1 atm and 300°C is flowing inside a horizontal pipe that has 5.3 cm ID and 6.0 cm OD. The flow velocity of carbon dioxide is 15 m/s. The outside surface of the pipe is exposed to the atmospheric air that has temperature of 40°C. Considering free convection conditions at the outer pipe surface and assuming pipe wall temperature as 200°C, calculate the inside overall heat transfer coefficient, outside heat transfer coefficient, and overall heat transfer coefficient based on the inside surface of the pipe. Warning: Calculate both the inside and the outside heat transfer coefficients only using the respective correlations and ignore radiation effects.arrow_forward
- can you solve the questionarrow_forward(B) Explain the difference between forced and free convectionarrow_forwardA well-insulated inside room, 6 m wide and 9 m long with a 3 m ceiling height, is to be heated by means of a ceiling panel installation. It is desired to maintain the surface of the floor at a temperature of 27 oC. Determine the necessary ceiling surface temperature to meet this requirement if the floor is to be planed oak, the ceiling is to be painted with an oil paint, and it is estimated that the portion of the heating requirement to be supplied by radiation is 2 500 W. Assume the walls to be nonconducting but reradiating.arrow_forward
- (a) If the cost of producing the hot water is $0.10 per kWh, what is the representative daily costof heat loss from an uninsulated pipe to the air per meter of pipe length? The convectionresistance associated with water flow in the pipe may be neglected.(b) Determine the savings associated with application of a 10-mm-thick coating of urethaneinsulation (k = 0.026 W/m-K) to the outer surface of the pipe.arrow_forwardPROBLEM 1Consider an adult human standing in the centre of a closed room. The air and room’swalls, ceiling and floor surrounding the being are at a temperature of 25oC. Assume forthe adult body a temperature of 37oC, a surface area of 1.7m2, an emissivity of 0.95 andthe heat transfer coefficient of 6 W/m2K for natural convection between the air and thebody. Question:(a) Describe the modes of heat transfer between the adult human and theirsurroundings. What are some assumptions that must be made before calculatingthe heat transfer rates?(b) Determine the total rate of heat transfer from the adult into their surroundings.arrow_forward1-mm-diameter cylindrical resistor, insulated with a sheath of thermal conductivity, k, of 0.12 W/m-K, is located in an evacuated enclosure. The surface emissivity of the sheath is 0.85. The resistor is maintained at 450 K and the enclosure is at 300 K. What is the radius of the sheath that maximises the rate of heat loss from the resistor? Evaluate the corresponding maximum heat rate per unit length of the resistor and the sheath surface temperature. Determine the value of the parameter hirerlk where h, is the linearised radiation heat transfer coefficient at the critical radius, rer. Comment on your results. State all assumptions made. What is the rate of heat loss per unit length from the uninsulated resistor if its surface emissivity is the same as the sheath surface of the insulated resistor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license