
Concept explainers
(a)
Interpretation : Whether the given molecule N2 is a polar covalent or a nonpolar covalent is to be identified.
Concept Introduction :
A covalent bond is formed when there is sharing of electrons between the atoms to fulfill the noble gas configuration. There are two types of covalent bonds; polar covalent bonds and nonpolar covalent bonds. In a polar molecule the bonded pair of electrons is not shared equally among the atoms. If in a molecule the electronegativity of both the atoms is equal or identical, there is no pulling of electrons and they form nonpolar bond.
(a)

Answer to Problem 4E
N2has nonpolar covalent bond.
Explanation of Solution
If in a molecule the electronegativity of both the atoms is equal or identical, there is no pulling of electrons and they share the electrons equally between them. There is no formation of partial charges and this type of bond is called nonpolar covalent bond. In nitrogen molecule both atoms are same so they have no difference in electronegativity. Hence the bond is nonpolar covalent.
(b)
Interpretation : Whether the given molecule HF is a polar covalent or a nonpolar covalent is to be identified.
Concept Introduction :
A covalent bond is formed when there is sharing of electrons between the atoms to fulfill the octet configuration. There are two types of covalent bonds; polar covalent bonds and nonpolar covalent bonds. In a polar molecule the bonded pair of electrons is not shared equally among the atoms. If in a molecule the electronegativity of both the atoms is equal or identical, there is no pulling of electrons and they form nonpolar bond.
(b)

Answer to Problem 4E
HF has polar covalent bond between hydrogen atom and fluorine atom.
Explanation of Solution
In a polar molecule the bonded pair of electrons is not shared equally among the atoms. In HF molecule, the hydrogen and fluorine atom do not share the bonded pair of electrons equally. Fluorine atom with higher electronegativity attracts more electrons than hydrogen atom with low electronegativity. Fluorine has partial negative charge and hydrogen has positive charge. This results in formation of a polar covalent bond.
(c)
Interpretation : Whether the given molecule F2 is a polar covalent or a nonpolar covalent is to be identified.
Concept Introduction :
A covalent bond is formed when there is sharing of electrons between the atoms to fulfill the noble gas configuration. There are two types of covalent bonds; polar covalent bonds and nonpolar covalent bonds. In a polar molecule the bonded pair of electrons is not shared equally among the atoms.If in a molecule the electronegativity of both the atoms is equal or identical, there is no pulling of electrons and they form nonpolar bond.
(c)

Answer to Problem 4E
F2has nonpolar covalent bond between two fluorine atoms.
Explanation of Solution
If in a molecule the electronegativity of both the atoms is equal or identical, there is no pulling of electrons and they share the electrons equally between them. There is no formation of partial charges and this type of bond is called nonpolar covalent bond. In fluorine molecule both atoms are same so they have no difference in electronegativity. Hence the bond is nonpolar covalent.
(d)
Interpretation : Whether the given molecule NO is a polar covalent or a nonpolar covalent is to be identified.
Concept Introduction :
There are two types of covalent bonds; polar covalent bonds and nonpolar covalent bonds. In polar covalent molecule there is partial charge on atoms and in nonpolar covalent molecule ther is no partial charge on atoms.
(d)

Answer to Problem 4E
NO is a polar covalent molecule.
Explanation of Solution
In NO molecule oxygen is more electronegative than nitrogen atom. It pulls the electrons towards itself and so develops a partial negative charge on itself. Nitrogen has a partial positive charge, so the molecule is polar covalent.
(e)
Interpretation : Whether the given molecule FCl is a polar covalent or a nonpolar covalent is to be identified.
Concept Introduction :
A covalent bond is formed when there is sharing of electrons between the atoms to fulfill the octet configuration. There are two types of covalent bonds; polar covalent bonds and nonpolar covalent bonds.
(e)

Answer to Problem 4E
FCl has polar covalent bond.
Explanation of Solution
When two atoms with different electronegativities form a covalent bond with each other, the resultant bond is called polar covalent bond. FCl has polar covalent bond between fluorine and chlorine atom as fluorine is more electronegative than chlorine. So fluorine develops a partial negative charge and chlorine develops a partial positive charge.
Chapter U2 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Organic Chemistry (8th Edition)
Campbell Biology in Focus (2nd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Anatomy & Physiology (6th Edition)
- Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. H The IUPAC name isarrow_forward[Review Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. The IUPAC name is Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardPlease draw.arrow_forward
- A chromatogram with ideal Gaussian bands has tR = 9.0 minutes and w1/2 = 2.0 minutes. Find the number of theoretical plates that are present, and calculate the height of each theoretical plate if the column is 10 centimeters long.arrow_forwardAn open tubular column has an inner diameter of 207 micrometers, and the thickness of the stationary phase on the inner wall is 0.50 micrometers. Unretained solute passes through in 63 seconds and a particular solute emerges at 433 seconds. Find the distribution constant for this solute and find the fraction of time spent in the stationary phase.arrow_forwardConsider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forward
- To improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forwardplease draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardNaming and drawing secondary Write the systematic (IUPAC) name for each of the following organic molecules: CH3 Z structure CH3 CH2 CH2 N-CH3 CH3-CH2-CH2-CH-CH3 NH CH3-CH-CH2-CH2-CH2-CH2-CH2-CH3 Explanation Check ☐ name ☐ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C Garrow_forward
- C This question shows how molecular orbital (MO) theory can be used to understand the chemical properties of elemental oxygen O₂ and its anionic derivative superoxide Oz. a) Draw the MO energy diagram for both O2 and O2. Clearly label your diagram with atomic orbital names and molecular orbital symmetry labels and include electrons. Draw the Lewis structure of O2. How does the MO description of O2 differ from the Lewis structure, and how does this difference relate to the high reactivity and magnetic properties of oxygen? ) Use the MO diagram in (a) to explain the difference in bond length and bond energy between superoxide ion (Oz, 135 pm, 360 kJ/mol) and oxygen (O2, 120.8 pm, 494 kJ/mol).arrow_forwardPlease drawarrow_forward-Page: 8 nsition metal ions have high-spin aqua complexes except one: [Co(HO)₁]". What is the d-configuration, oxidation state of the metal in [Co(H:O))"? Name and draw the geometry of [Co(H2O)]? b) Draw energy diagrams showing the splitting of the five d orbitals of Co for the two possible electron configurations of [Co(H2O)]: Knowing that A = 16 750 cm and Пl. = 21 000 cm, calculate the configuration energy (.e., balance or ligand-field stabilization energy and pairing energy) for both low spin and high spin configurations of [Co(H2O)]. Which configuration seems more stable at this point of the analysis? (Note that 349.76 cm = 1 kJ/mol) Exchange energy (IT) was not taken into account in part (d), but it plays a role. Assuming exchange an occur within t29 and within eg (but not between tz, and ea), how many exchanges are possible in the low in configuration vs in the high spin configuration? What can you say about the importance of exchange energy 07arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





