
Concept explainers
(a)
Interpretation: The number of lone pairs in TeCl2 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(a)

Answer to Problem 6E
8 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of TeCl2 molecule;
Number of valence electrons in Te = 6 electrons
Number of valence electrons in Cl = 7
Total number of valence electrons = 6 + (2 x 7) = 20 electrons.
Thus the Lewis structure must be:
Hence in TeCl2 molecule there are 8 lone pairs.
(b)
Interpretation: The number of lone pairs in HI molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(b)

Answer to Problem 6E
3 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of HI molecule;
Number of valence electrons in I = 7 electrons
Number of valence electrons in H= 1
Total number of valence electrons = 1 + (1 x 7) = 8 electrons.
Thus the Lewis structure must be:
Hence in HI molecule there are 3 lone pairs.
(c)
Interpretation: The number of lone pairs in AsBr3molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(c)

Answer to Problem 6E
10 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of AsBr3 molecule;
Number of valence electrons in As = 5 electrons
Number of valence electrons in Br = 7
Total number of valence electrons = 5 + (3 x 7) = 26 electrons.
Thus the Lewis structure must be:
Hence in AsBr3 molecule there are 10 lone pairs.
(d)
Interpretation: The number of lone pairs in SiF4 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(d)

Answer to Problem 6E
12 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of SiF4 molecule;
Number of valence electrons in Si = 4 electrons
Number of valence electrons in F = 7
Total number of valence electrons = 4 + (4 x 7) = 32 electrons.
Thus the Lewis structure must be:
Hence in SiF4 moleculethere are 12 lone pairs.
(e)
Interpretation: The number of lone pairs in F2 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(e)

Answer to Problem 6E
6 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of F2 molecule;
Number of valence electrons in F = 7
Total number of valence electrons = (2x 7) = 14 electrons.
Thus the Lewis structure must be:
Hence in F2 molecule there are 6 lone pairs.
Chapter U2 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Chemistry (7th Edition)
Chemistry: A Molecular Approach (4th Edition)
Introductory Chemistry (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Brock Biology of Microorganisms (15th Edition)
- Don't used hand raiting and don't used Ai solutionarrow_forwardH2(g) + I2(g) ⇔ 2HI(g) Using the above equilibrium, find the equilibrium concentration of H2 if the intial concentration of both H2 and I2 are 2.0. K at this temperature is 55.64.arrow_forwardfind K, the equilibrium constant, if the inital concentration of SO3 is 0.166 M, and the equilibrium concentration of O2 is 0.075 M. 2SO3 (g) ⇌ 2SO2 (g) + O2 (g)arrow_forward
- Q4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br OH Brarrow_forwardQ7: Rank the following groups in order of basicity, nucleophilicity, and leaving group ability. a) H₂O, OH, CH3COOT b) NH3, H₂O, H₂Sarrow_forwardQ8: Rank the following compounds in order of increasing reactivity in a nucleophilic substitution reaction with CN as the nucleophile. Br A B NH2 LL F C D OH CI LLI E Q9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d). a) H "Cl D + -OCH 3 Page 3 of 5arrow_forward
- Q10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





