
Concept explainers
(a)
Interpretation: The number of lone pairs in TeCl2 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(a)

Answer to Problem 6E
8 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of TeCl2 molecule;
Number of valence electrons in Te = 6 electrons
Number of valence electrons in Cl = 7
Total number of valence electrons = 6 + (2 x 7) = 20 electrons.
Thus the Lewis structure must be:
Hence in TeCl2 molecule there are 8 lone pairs.
(b)
Interpretation: The number of lone pairs in HI molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(b)

Answer to Problem 6E
3 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of HI molecule;
Number of valence electrons in I = 7 electrons
Number of valence electrons in H= 1
Total number of valence electrons = 1 + (1 x 7) = 8 electrons.
Thus the Lewis structure must be:
Hence in HI molecule there are 3 lone pairs.
(c)
Interpretation: The number of lone pairs in AsBr3molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(c)

Answer to Problem 6E
10 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of AsBr3 molecule;
Number of valence electrons in As = 5 electrons
Number of valence electrons in Br = 7
Total number of valence electrons = 5 + (3 x 7) = 26 electrons.
Thus the Lewis structure must be:
Hence in AsBr3 molecule there are 10 lone pairs.
(d)
Interpretation: The number of lone pairs in SiF4 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(d)

Answer to Problem 6E
12 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of SiF4 molecule;
Number of valence electrons in Si = 4 electrons
Number of valence electrons in F = 7
Total number of valence electrons = 4 + (4 x 7) = 32 electrons.
Thus the Lewis structure must be:
Hence in SiF4 moleculethere are 12 lone pairs.
(e)
Interpretation: The number of lone pairs in F2 molecule needs to be determined.
Concept Introduction:
Lewis dot structure or electron dot structure can be defined as the structure of a molecule in which all the valence electrons and lone pairs on each atom is represented with the help of line and dot or cross.
The Lewis structure is used to predict the hybridization and molecular geometry of the molecule as it gives complete idea about the bonding between bonded atoms in a molecule.
(e)

Answer to Problem 6E
6 lone pairs;
Explanation of Solution
The number of lone pairs in any molecule can be determined with the help of Lewis structure. In the Lewis structure of F2 molecule;
Number of valence electrons in F = 7
Total number of valence electrons = (2x 7) = 14 electrons.
Thus the Lewis structure must be:
Hence in F2 molecule there are 6 lone pairs.
Chapter U2 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Chemistry (7th Edition)
Chemistry: A Molecular Approach (4th Edition)
Introductory Chemistry (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Brock Biology of Microorganisms (15th Edition)
- Complete the reaction in the drawing area below by adding the major products to the right-hand side. If there won't be any products, because nothing will happen under these reaction conditions, check the box under the drawing area instead. Note: if the products contain one or more pairs of enantiomers, don't worry about drawing each enantiomer with dash and wedge bonds. Just draw one molecule to represent each pair of enantiomers, using line bonds at the chiral center. More... No reaction. my ㄖˋ + 1. Na O Me Click and drag to start drawing a structure. 2. H +arrow_forwardPredict the intermediate 1 and final product 2 of this organic reaction: NaOMe H+ + 1 2 H H work up You can draw 1 and 2 in any arrangement you like. Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Click and drag to start drawing a structure. X $ dmarrow_forwardPredict the major products of this organic reaction: 1. NaH (20°C) 2. CH3Br ? Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. G Crarrow_forward
- Predict the major products of this organic reaction: 1. LDA (-78°C) ? 2. Br Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. . • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. Xarrow_forwardPlease draw the structuresarrow_forwardDraw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 0 1. Eto 1. Eto- 1 2 2. MeBr 2. EtBr H3O+ A 3 You can draw the three structures in any arrangement you like. Explanation Check Click and drag to start drawing a structure.arrow_forward
- Draw the missing intermediate 1 and final product 2 of this synthesis: 1. MeO- H3O+ 1 2 2. PrBr Δ You can draw the two structures in any arrangement you like. Click and drag to start drawing a structure.arrow_forwardWhat is the differences between: Glyceride and phosphoglyceride Wax and Fat Soap and Fatty acid HDL and LDL cholesterol Phospho lipids and sphingosine What are the types of lipids? What are the main lipid components of membrane structures? How could lipids play important rules as signaling molecules and building units? The structure variety of lipids makes them to play significant rules in our body, conclude breifly on this statement.arrow_forwardWhat is the differences between DNA and RNA for the following: - structure - function - type What is the meaning of: - replication - transcription - translation show the base pair connection(hydrogen bond) in DNA and RNAarrow_forward
- What is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward> aw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 1. Eto 1. EtO¯ H3O+ 1 2 2. PrBr 2. PrBr Δ You can draw the three structures in any arrangement you like. 3 Click and drag to start drawing a structure. Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





