Concept explainers
(a)
Interpretation:
Empirical formula of the white solid compound has to be given.
Concept Introduction:
Empirical formula is the one that can be determined from the molar mass of the elements that is present in the compound and the mass percentage of the elements. The mass percentage of the elements present in the compound is converted into the moles of each element considering the molar mass of each element. The relative number of moles for each type of atoms is found out finally.
(b)
Interpretation:
Compound
Concept Introduction:
Binary molecular compounds are named by using the elements present in it and the number of atoms present in a molecule.
Rules for naming molecular compounds:
- First element name is written as such that is followed by the name of the second element in which the suffix is changed to –ide.
- Greek prefixes are used to indicate the number of atoms of each element that is present. Generally prefix mono- is ignored.
Want to see the full answer?
Check out a sample textbook solutionChapter F Solutions
Chemical Principles: The Quest for Insight
- Given that the density of argon is 1.78 g/L under standard conditions of temperature and pressure, how many argon atoms are present in a room with dimensions 4.0 m 5.0 m 2.4 m that is filled with pure argon under these conditions of temperature and pressure?arrow_forward4-102 Aspartame, an artificial sweetener used as a sugar substitute in some foods and beverages, has the molecular formula C14H18N2O5. (a) How many mg of aspartame are present in 3.72 × 1026 molecules of aspartame? (b) Imagine you obtain 25.0 mL of aspartame, which is known to have a density of 1.35 g/mL. How many molecules of aspartame are present in this volume? (c) How many hydrogen atoms are present in 1.00 mg of aspartame? (d) Complete the skeletal structure of aspartame, where all the bonded atoms are shown but double bonds, triple bonds, and/or lone pairs are missing. (e) Identify the various types of geometries present in each central atom of aspartame using VSEPR theory. (f) Determine the various relative bond angles associated with each central atom of aspartame using VSEPR theory. (g) What is the most polar bond in aspartame? (h) Would you predict aspartame to be polar or nonpolar? (i) Is aspartame expected to possess resonance? Explain why or why not. (j) Consider the combustion of aspartame, which results in formation of NO2(g) as well as other expected products. Write a balanced chemical equation for this reaction. (k) Calculate the weight of C02(g) that can be prepared from 1.62 g of aspartame mixed with 2.11 g of oxygen gas.arrow_forwardThe present average concentration (mass percent) of magnesium ions in seawater is 0.13%. A chemistry textbook estimates that if 1.00 × 108 tons Mg were taken out of the sea each year, it would take one million years for the Mg concentration to drop to 0.12%. Do sufficient calculations to either verify or refute this statement. Assume that Earth is a sphere with a diameter of 8000 mi, 67% of which is covered by oceans to a depth of 1 mi, and that no Mg is washed back into the oceans at any time.arrow_forward
- Chlorine exists mainly as two isotopes, 37Cl and 33Cl. Which is more abundant? How do you know?arrow_forward3.117 For the oxides of iron, FeO, Fe2O3, and Fe3O4, describe how you would determine which has the greatest percentage by mass of oxygen. Would you need to look up any information to solve this problem?arrow_forwardNitrogen fixation in the root nodules of peas and other legumes occurs with a reaction involving a molybdenum-containing enzyme named nitrogenase. This enzyme contains two Mo atoms per molecule and is 0.0872% Mo by mass. Calculate the molar mass of the enzyme.arrow_forward
- I only need parts B and D, thank you! The following quantities are placed in a container: 1.98 × 10^24 atoms of hydrogen, 1.32 mol of sulfur, and 113.8 g of diatomic oxygen. (b) What is the total number of moles of atoms for the three elements? (c) If the mixture of the three elements formed a compound with molecules that contain two hydrogen atoms, onesulfur atom, and four oxygen atoms, which substance is consumed first? (d) How many atoms of each remaining element would remain unreacted in the change described in (c)?arrow_forwardWhen potassium chlorate is subjected to high temperatures, it decomposes into potassium chloride and oxygen gas. (a) What is the balanced chemical equation for this reaction? (b) In this decomposition, the actual yield is 83.2%. If 198.5 g of oxygen were produced, how much (in grams) potassium chlorate decomposed?arrow_forward. A sample of 1.000 g of a compound containing carbon and hydrogen reacts with oxygen at elevated temperature to yield 0.692 g H2O and 3.381 g CO2.(a) Calculate the masses of C and H in the sample.(b) Does the compound contain any other elements?(c) What are the mass percentages of C and H in thecompound?(d) What is the empirical formula of the compound?arrow_forward
- (b) The number of moles of potassium that contains 8.93 × 1025 atoms. x 10 molarrow_forward5. For the element aluminum, Al: (a) Calculate the number of moles in 7.54 g. (b) Calculate the number of grams in 0.154 mol. (c) How many moles are there in 5.22 x 1022 atoms of the element?arrow_forward3) An organic compound contains only C, H, and O. Complete combustion of a 3.185 g sample in an excess of oxygen yields 8.846 g CO2 and 2.507 g H2O. (a) What is the percent composition, by mass, of this compound? (b) What is the empirical formula of the compound? (c) If the molar mass of this compound is 206 g/mol, what is the molecular formula? (C: 12.01 g/mol; H: 1.01 g/mol; O: 16.0 g/mol)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning