Concept explainers
(a)
Interpretation:
The measurement of
Concept Introduction:
Measurement is the measure of quantity, capacity, dimensions or extent of something. Mass, length, pressure, temperature, volume, time and concentration are some common type of measurements. English system and metric system are two types of measurement systems that are in use in the United States. Measurement wise both English system and metric system are precise. There are instance where measurements from one system has to be changed to their equivalent in other system. This is done by dimensional analysis, which involves conversion factors. Conversion factor is a ratio that indicates how one unit of measurement is related to another unit of measurement. This can be expressed as shown below;
(a)
Explanation of Solution
Given measurement is
Therefore, the conversion factor that has to be used to convert the given measurement into picometer is;
The given measurement is converted into picometer as shown below;
Therefore, the converted measurement is
(b)
Interpretation:
The measurement of
Concept Introduction:
Refer to part (a).
(b)
Explanation of Solution
Given measurement is
Therefore, the conversion factor that has to be used to convert the given measurement into
The given measurement is converted into
Therefore, the converted measurement is
(c)
Interpretation:
The measurement of
Concept Introduction:
Refer to part (a).
(c)
Explanation of Solution
Given measurement is
Therefore, the conversion factor that has to be used to convert the given measurement into
The given measurement is converted into
Therefore, the converted measurement is
(d)
Interpretation:
The measurement of
Concept Introduction:
Refer to part (a).
(d)
Explanation of Solution
Given measurement is
Therefore, the conversion factor that has to be used to convert the given measurement into
The given measurement is converted into
Therefore, the converted measurement is
(e)
Interpretation:
The measurement of
Concept Introduction:
Refer to part (a).
(e)
Explanation of Solution
Given measurement is
Therefore, the conversion factor that has to be used to convert the given measurement into
The given measurement is converted into
Therefore, the converted measurement is
Want to see more full solutions like this?
Chapter F Solutions
Chemical Principles: The Quest for Insight
- Assume that the radius of Earth is 6400 km, the crust is 50. km thick, the density of the crust is 3.5 g/cm3, and 25.7% of the crust is silicon by mass. Calculate the total mass of silicon in the crust of Earth.arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardThe present average concentration (mass percent) of magnesium ions in seawater is 0.13%. A chemistry textbook estimates that if 1.00 × 108 tons Mg were taken out of the sea each year, it would take one million years for the Mg concentration to drop to 0.12%. Do sufficient calculations to either verify or refute this statement. Assume that Earth is a sphere with a diameter of 8000 mi, 67% of which is covered by oceans to a depth of 1 mi, and that no Mg is washed back into the oceans at any time.arrow_forward
- 4-102 Aspartame, an artificial sweetener used as a sugar substitute in some foods and beverages, has the molecular formula C14H18N2O5. (a) How many mg of aspartame are present in 3.72 × 1026 molecules of aspartame? (b) Imagine you obtain 25.0 mL of aspartame, which is known to have a density of 1.35 g/mL. How many molecules of aspartame are present in this volume? (c) How many hydrogen atoms are present in 1.00 mg of aspartame? (d) Complete the skeletal structure of aspartame, where all the bonded atoms are shown but double bonds, triple bonds, and/or lone pairs are missing. (e) Identify the various types of geometries present in each central atom of aspartame using VSEPR theory. (f) Determine the various relative bond angles associated with each central atom of aspartame using VSEPR theory. (g) What is the most polar bond in aspartame? (h) Would you predict aspartame to be polar or nonpolar? (i) Is aspartame expected to possess resonance? Explain why or why not. (j) Consider the combustion of aspartame, which results in formation of NO2(g) as well as other expected products. Write a balanced chemical equation for this reaction. (k) Calculate the weight of C02(g) that can be prepared from 1.62 g of aspartame mixed with 2.11 g of oxygen gas.arrow_forwardA soft drink contains an unknown mass of citric acid, C3H5O(COOH)3. It requires 6.42 mL of 9.580 × 10−2-M NaOH to neutralize the citric acid in 10.0 mL of the soft drink. C3H5O(COOH)3(aq) + 3 NaOH(aq) → Na3C3H5O(COO)3(aq) + 3 H2O(ℓ) Determine which step in these calculations for the mass of citric acid in 1 mL soft drink is incorrect? Why? n (NaOH) = (6.42 mL)(1L/1000 mL)(9.580 × 10−2 mol/L) n (citric acid) = (6.15 × 10−4 mol NaOH) × (3 mol citric acid/1 mol NaOH) m (citric acid in sample) = (1.85 × 10−3 mol citric acid) × (192.12 g/mol citric acid) m (citric acid in 1 mL soft drink) = (0.354 g citric acid)/(10 mL soft drink) Determine the correct result.arrow_forwardWhat mass of solid NaOH (97.0% NaOH by mass) is required to prepare 1.00 L of a 10.0% solution of NaOH by mass? The density of the 10.0% solution is 1.109 g/mL.arrow_forward
- What is the mass of fish, in kilograms, that one would have to consume to obtain a fatal dose of mercury, if the fish contains 30 parts per million of mercury by weight? (Assume that all the mercury from the fish ends up as mercury (II) chloride in the body and that a fatal dose is 0.20 g of HgCl2.) How many pounds of fish is this?arrow_forwardThe balanced equation for the reduction of iron ore to the metal using CO is Fe2O3(s) + 3 CO(g) 2 Fe(s) + 3 CO2(g) (a) What is the maximum mass of iron, in grams, that can be obtained from 454 g (1.00 lb) of iron(III) oxide? (b) What mass of CO is required to react with 454 g cot Fe2O3?arrow_forwardEthanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forward
- If 25.00 mL of 3.00 M HCl(aq) is diluted with water to a volume of 750.0 mL, what is the molarity of the diluted HCl(aq)? Don't write the units of measure (M=mol/L) in the box; only the numerical value of the answer, using the standard notation.arrow_forwardFor each of the following reactions, suggest two soluble ionic compounds that, when mixed together in water, result in the net ionic equation given: (a) 2 Ag+ (aq) + CO3²¯ (aq) → Ag₂CO3(s) (b) Mg²+ (aq) + 2 OH¯(aq) → Mg(OH)₂(s), the suspension present in milk of magnesia 3+ (c) 3 Ca³+ (aq) + 2 PO2 (aq) → Ca3(PO4)2(s), gypsum, a component of concretearrow_forward12. (b) A student knew that calcium hydroxide could be made by adding calcium to water. The student added 0.00131 mol of calcium to a beaker containing about 100 cm of water. A reaction took place as shown by the equation below, All the calcium hydroxide formed was soluble. Ca(s) + 2H,0(1I) → Ca(OH) (aq) + H,(g) (D Calculate the mass of calcium that the student added. mass of calcium = g (ii) Calculate the volume of hydrogen gas, in dm3, produced in this reaction at room temperature and pressure, RTP. volume of hydrogen gas = dm3 (iii) The student transferred the contents of the beaker to a 250 cm3 volumetric flask and water was added to make the solution up to 250 cm³. Calculate the concentration, in mol dm3, of hydroxide ions in the 250 cm³ solution. concentration = moldm 3arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning