Concept explainers
(a)
Interpretation:
Substance
Concept Introduction:
Molecular compounds are electrically neutral. They consist of neutral molecules. Molecule contains a group of atoms that are bonded together in a specific way of arrangement. Molecular compounds contain only nonmetals.
Ionic compounds are electrically neutral. This is because there are equal numbers of opposite charges present in the ionic compounds. Empirical formula gives a relative number of atoms of each type of element that is present in the compound to the smallest possible whole-number as subscript. Ionic compound contains at least one metal atom.
Element contains only one type of atoms in it. They have the same chemical and physical property for each and every atom in it.
(b)
Interpretation:
Substance
Concept Introduction:
Refer part (a).
(c)
Interpretation:
Substance
Concept Introduction:
Refer part (a).
(d)
Interpretation:
Substance
Concept Introduction:
Refer part (a).
(e)
Interpretation:
Substance
Concept Introduction:
Refer part (a).
(f)
Interpretation:
Substance
Concept Introduction:
Refer part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter F Solutions
Chemical Principles: The Quest for Insight
- Given that the density of argon is 1.78 g/L under standard conditions of temperature and pressure, how many argon atoms are present in a room with dimensions 4.0 m 5.0 m 2.4 m that is filled with pure argon under these conditions of temperature and pressure?arrow_forwardChlorine exists mainly as two isotopes, 37Cl and 33Cl. Which is more abundant? How do you know?arrow_forward4-102 Aspartame, an artificial sweetener used as a sugar substitute in some foods and beverages, has the molecular formula C14H18N2O5. (a) How many mg of aspartame are present in 3.72 × 1026 molecules of aspartame? (b) Imagine you obtain 25.0 mL of aspartame, which is known to have a density of 1.35 g/mL. How many molecules of aspartame are present in this volume? (c) How many hydrogen atoms are present in 1.00 mg of aspartame? (d) Complete the skeletal structure of aspartame, where all the bonded atoms are shown but double bonds, triple bonds, and/or lone pairs are missing. (e) Identify the various types of geometries present in each central atom of aspartame using VSEPR theory. (f) Determine the various relative bond angles associated with each central atom of aspartame using VSEPR theory. (g) What is the most polar bond in aspartame? (h) Would you predict aspartame to be polar or nonpolar? (i) Is aspartame expected to possess resonance? Explain why or why not. (j) Consider the combustion of aspartame, which results in formation of NO2(g) as well as other expected products. Write a balanced chemical equation for this reaction. (k) Calculate the weight of C02(g) that can be prepared from 1.62 g of aspartame mixed with 2.11 g of oxygen gas.arrow_forward
- Chalky, white crystals in mineral collections are often labeled borax, which has the molecular formula Na2B4O7 10H2O, when actually they are partially dehydrated samples with the molecular formula Na2B4O7 5H2O, which is more stable under the storage conditions. Real crystals of borax are colorless and transparent. (a) Calculate the percent mass that the mineral has lost when it partially dehydrates. (b) Is the percent boron by mass the same in both compounds?arrow_forward1. Which of the following hydrocarbons has the highest mass percentage of carbon? methane, CH4 ethane, C2H6 propane, C3H8 butane, C4H10arrow_forwardYou take 1.00 g of an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen), burn it in air, and collect 2.20 g CO2 and 0.400 g H2O. You know that the molar mass of aspirin is between 170 and 190 g/mol. Reacting 1 mole of salicylic acid with I mole of acetic anhydride (C4H6O3) gives you 1 mole of aspirin and 1 mole of acetic acid (C2H4O2). Use this information to determine the molecular formula of salicylic acid.arrow_forward
- 3.117 For the oxides of iron, FeO, Fe2O3, and Fe3O4, describe how you would determine which has the greatest percentage by mass of oxygen. Would you need to look up any information to solve this problem?arrow_forward3.116 The simplest approximate chemical formula for the human body could be written as C728H4850O1970N104Ca24P16K4S4Na3Cl2Mg. Based on this formula, describe how you would rank by mass the ten most abundant elements in the human body.arrow_forwardAssume that the radius of Earth is 6400 km, the crust is 50. km thick, the density of the crust is 3.5 g/cm3, and 25.7% of the crust is silicon by mass. Calculate the total mass of silicon in the crust of Earth.arrow_forward
- 4.69 The pictures below show a molecular-scale view of a chemical reaction between H2 and CO to produce methanol, CH3OH. The box on the left represents the reactants at the instant of mixing, and the box on the right shows what is left once the reaction has gone to completion. Was there a limiting reactant in this reaction? If so, what was it? Write a balanced chemical equation for this reaction. As usual, your equation should use the smallest possible whole number coefficients for all substances.arrow_forwardWhat is the mass of fish, in kilograms, that one would have to consume to obtain a fatal dose of mercury, if the fish contains 30 parts per million of mercury by weight? (Assume that all the mercury from the fish ends up as mercury (II) chloride in the body and that a fatal dose is 0.20 g of HgCl2.) How many pounds of fish is this?arrow_forwardA substance X2Z has the composition (by mass) of 40.0% X and 60.0% Z. What is the composition (by mass) of the compound XZ2?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning