
Concept explainers
(a)
Interpretation:
Compound
Concept Introduction:
Ionic compounds are named considering the cation and anion present in it. The cation part is written first followed by the anion part.
Rules for naming ionic compounds:
- The cation and anion present in the ionic compound has to be identified. Oxidation number of the cation has to be decided in order to cancel the charge of the negative anions.
- Cation is named first. In case, if the metal belongs to
transition metals , then the oxidation number is shown using Roman numeral and entered in parenthesis. - Anion has to be named next. If monoatomic anion is present, then the element name is ended with –ide. If an oxoanion is present then suffix –ate is added for the ion that has large number of oxygen atoms and suffix –ite is added for the ion that has less number of oxygen atoms. If the element can form a series of four oxoanions, then for the oxoanion having the less number of oxygen atoms, prefix hypo- is added and prefix per- is added if the oxoanion contains highest number of oxygen atoms.
- If water molecule is present in the formula of the ionic compound, then the word hydrate is added along with the Greek prefix that correspond to the number of water molecules present in it.
(b)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(c)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(d)
Interpretation:
Compound
Concept Introduction:
Binary molecular compounds are named by using the elements present in it and the number of atoms present in a molecule.
Rules for naming molecular compounds:
- First element name is written as such that is followed by the name of the second element in which the suffix is changed to –ide.
- Greek prefixes are used to indicate the number of atoms of each element that is present. Generally prefix mono- is ignored.
(e)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(f)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(g)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(h)
Interpretation:
Compound
Concept Introduction:
Refer part (a).
(i)
Interpretation:
Compound
Concept Introduction:
Refer part (a).

Want to see the full answer?
Check out a sample textbook solution
Chapter F Solutions
Chemical Principles: The Quest for Insight
- Can I please get help with this?arrow_forwardUse the Henderson-Hasselbalch equation to calculate pH of a buffer containing 0.050M benzoic acidand 0.150M sodium benzoate. The Ka of benzoic acid is 6.5 x 10-5arrow_forwardA. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forward
- What is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





