
(a)
Interpretation:
The electronic configuration of the element with
Concept introduction:
The electronic configuration of an element is the distribution of the electrons in an atom of the element into atomic orbitals. It is known that the atomic orbitals are designated as 1s, 2s, 2p, 3s, etc depending on their energy and distance from the nucleus. These atomic orbitals accommodate the electrons orbiting around the nucleus.

Answer to Problem 9E
The electronic configuration of the element with atomic number 13 is 1s22s22p63s23p1
Explanation of Solution
The atomic orbital closest to the nucleus is the 1s orbital followed by the 2s orbital, then 2p and so on. Each electronic orbital can hold maximum 2 electrons. Thus, both the 1s and 2s orbitals can hold 2 electrons each. There are 3 p orbitals depending on their orientations with respect to the nucleus and each p orbital can hold 2 electrons at maximum. Thus, the 2p and 3p orbitals can accommodate 6 electrons in total.
The energy of the orbitals is guided by the principal quantum number, n of the orbital. The orbital having n = 1 has the lowest energy (closest to the nucleus) and the energy of the orbitals increases with increasing n values.
Further, while filling up the atomic orbitals, it must be noted that unless a lower energy atomic orbital is completely filled with electrons, the next higher energy orbital will not be filled up with an electron.
The element with atomic number 13 has 13 electrons in total (the atomic number is equal to the number of electrons contained in the neutral atom). The first two electrons must go in the 1s orbital followed by 2 electrons in the 2s orbital. The next available orbital is the 2p orbital which can hold 6 electrons. The remaining 3 electrons go into the 3s and 3p orbitals. This will give the electronic configuration stated above (the superscripts denote the number of electrons in the atomic orbitals).
(b)
Interpretation:
The number of valence electrons in the element with atomic number 13 needs to be determined.
Concept introduction:
The valence electrons are defined as the electron occurring in the outermost, highest energy orbitals of the element. Since a principal shell (defined by quantum number n) can have more than 1 sub-shell or atomic orbital, hence, all the electrons occurring in the highest shell are considered as valence electrons.

Answer to Problem 9E
The number of valence electrons in the element with atomic number 13 is 3.
Explanation of Solution
It has already been stated above that the highest energy shell in the element with atomic number 13 is the third shell (n = 3). Since the third shell has three available atomic orbitals (s, p and d) out of which the s and the p orbitals are occupied here, hence, the sum total of the electrons in the third shell is the number of valence electrons in the element.
(c)
Interpretation:
The number of core electrons in the element with atomic number 13 needs to be determined.
Concept introduction:
The core electrons are defined as the electrons occurring in the inner, lower energy orbitals of the element. Since a principal shell (defined by quantum number n) can have more than 1 sub-shell or atomic orbital, hence, all the electrons occurring in the inner shells are considered as core electrons.

Answer to Problem 9E
The number of core electrons in the element with atomic number 13 is 10.
Explanation of Solution
The valence electrons of the element having atomic number 13 occur in the third shell and there are 3 valence electrons. Thus, the remaining electrons must be the core electrons and a simple subtraction determines the number of core electrons as 10.
Chapter U1 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Concepts of Genetics (12th Edition)
Applications and Investigations in Earth Science (9th Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- Choosing reagents and conditions for acetal formation or hydrolysis 0/5 A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + This transformation can't be done in one step. 5 I H Autumn alo 值 Ar Barrow_forwardA block of copper of mass 2.00kg(cp = 0.3851 .K) and g temperature 0°C is introduced into an insulated container in which there is 1.00molH, O(g) at 100°C and 1.00 2 atm. Note that C P = 4.184. K for liquid water, and g that A H = 2260 for water. vap g Assuming all the steam is condensed to water, and that the pressure remains constant: (a) What will be the final temperature of the system? (b) What is the heat transferred from the water to the copper? (c) What is the entropy change of the water, the copper, and the total system?arrow_forwardIdentify the missing organic reactants in the following reaction: H+ X + Y OH H+ O O Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. X G 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Cente ? Earrow_forward
- Calculate the solubility of CaF2 in g/L (Kp = 4.0 x 10-8). sparrow_forwardFor the following reaction with excess reagent, predict the product. Be sure your answer accounts for stereochemistry. If multiple stereocenters are formed, be sure to draw all products using appropriate wedges and dashes. 1. EtLi, Et₂O CH₁ ? 2. H₂O*arrow_forwardWrite the systematic name of each organic molecule: structure 요 OH ہو۔ HO OH name X S ☐ ☐arrow_forward
- Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. D ㄖˋ ید H No reaction. + 5 H₂O.* Click and drag to start drawing a structure. OH H₂Oarrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction 'O 10 + x 也 HO + 义 Click and drag to start drawing a structure.arrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H- :0: C=N: b Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0° b=0 Xarrow_forward
- A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. • If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + This transformation can't be done in one step. T iarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: H+ O OH H+ + H₂O ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. X § ©arrow_forwardTable 1.1 Stock Standard Solutions Preparation. The amounts shown should be dissolved in 100 mL. Millipore water. Calculate the corresponding anion concentrations based on the actual weights of the reagents. Anion Amount of reagent (g) Anion Concentration (mg/L) 0.1649 Reagent Chloride NaCl Fluoride NaF 0.2210 Bromide NaBr 0.1288 Nitrate NaNO3 0.1371 Nitrite NaNO2 0.1500 Phosphate KH2PO4 0.1433 Sulfate K2SO4 0.1814arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





