![Living by Chemistry](https://www.bartleby.com/isbn_cover_images/9781464142314/9781464142314_smallCoverImage.jpg)
Concept explainers
Interpretation:
Ten changes observed in the world needs to be describes. The changes which involve chemistry needs to be identified and explained.
Concept introduction:
Our body mainly contains carbohydrates, proteins, fat etc. all are carbon compounds so one can say our whole life is based on chemicals and different chemicals are used to complete our daily life activities.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Daily life activities basically related with chemicals directly or indirectly are as follows:
1. First of all, discuss the air which human beings inhale. Due to our day by day activities air becomes polluted.
2. There are different chemical changes that take place like global warming. Due to global warming, the environment temperature rises day by day.
3. Generally, iron material is used to increase the strength of any material but it can get damaged due to rusting or corrosion.
4. If any food material is exposed for some time in open space then after a few hours you will notice a foul smell, it is because of the decomposition of food material, i.e., rancidity of food.
5. The cutting of trees and burning of wood is also a change which is related to chemistry. This is because combustion of wood results in the formation of carbon dioxide.
6. The main cause of noise pollution is a sound produced by industrial machines.
7. Few industries that are using highly toxic explosive chemicals mainly cause radioactive pollution.
8. Use of plastic-based materials that are non-biodegradable makes the environment polluted.
9. Excessive use of petroleum products increases the amount of CO2, NO2, etc. gases in the environment. These gases are the main cause of global warming.
10. Use of non-biodegradable cleaning solutions that increase water pollution.
For cleansing purpose use bio-degradable eco-friendly solutions to avoid the addition of non-biodegradable substances in water. The use of vehicles should be minimized to control the excessive use of fuels. All the plastic-based materials should be replaced with bio-degradable materials.
Chapter U1 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Organic Chemistry (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- Don't used hand raiting don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward13.84. Chlorine atoms react with methane, forming HCI and CH3. The rate constant for the reaction is 6.0 × 107 M¹ s¹ at 298 K. When the experiment was run at three other temperatures, the following data were collected: T (K) k (M-1 s-1) 303 6.5 × 107 308 7.0 × 107 313 7.5 x 107 a. Calculate the values of the activation energy and the frequency factor for the reaction. b. What is the value of the rate constant in the lower stratosphere, where T = 218 K?arrow_forward
- My Organic Chemistry textbook says about the formation of cyclic hemiacetals, "Such intramolecular reactions to form five- and six-membered rings are faster than the corresponding intermolecular reactions. The two reacting functional groups, in this case OH and C=O, are held in close proximity, increasing the probability of reaction."According to the book, the formation of cyclic hemiacetals occurs in acidic conditions. So my question is whether the carbonyl group in this reaction reacts first with the end alcohol on the same molecule or with the ethylene glycol. And, given the explanation in the book, if it reacts first with ethylene glycol before its own end alcohol, why would it? I don't need to know the final answer. I need to know WHY it would not undergo an intermolecular reaction prior to reacting with the ethylene glycol if that is the case. Please do not use an AI answer.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardHighlight in red each acidic location on the organic molecule at left. Highlight in blue each basic location on the organic molecule at right. Note for advanced students: we mean acidic or basic in the Brønsted-Lowry sense only. Cl N شیخ x Garrow_forward
- Q4: Draw the mirror image of the following molecules. Are the molecules chiral? C/ F LL CI CH3 CI CH3 0 CI CH3 CI CH3 CH3arrow_forwardComplete combustion of a 0.6250 g sample of the unknown crystal with excess O2 produced 1.8546 g of CO2 and 0.5243 g of H2O. A separate analysis of a 0.8500 g sample of the blue crystal was found to produce 0.0465 g NH3. The molar mass of the substance was found to be about 310 g/mol. What is the molecular formula of the unknown crystal?arrow_forward4. C6H100 5 I peak 3 2 PPM Integration values: 1.79ppm (2), 4.43ppm (1.33) Ipeakarrow_forward
- Nonearrow_forward3. Consider the compounds below and determine if they are aromatic, antiaromatic, or non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly drawn and you should be able to tell that the bonding electrons and lone pair electrons should reside in which hybridized atomic orbital 2. You should consider ring strain- flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti- aromaticity) H H N N: NH2 N Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic TT electrons Me H Me Aromaticity (Circle) Aromatic Aromatic Aromatic Aromatic Aromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic aromatic πT electrons H HH…arrow_forwardA chemistry graduate student is studying the rate of this reaction: 2 HI (g) →H2(g) +12(g) She fills a reaction vessel with HI and measures its concentration as the reaction proceeds: time (minutes) [IH] 0 0.800M 1.0 0.301 M 2.0 0.185 M 3.0 0.134M 4.0 0.105 M Use this data to answer the following questions. Write the rate law for this reaction. rate = 0 Calculate the value of the rate constant k. k = Round your answer to 2 significant digits. Also be sure your answer has the correct unit symbol.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)