
Concept explainers
Interpretation:
Cations and anions with appropriate charges for given ionic compounds are to be given. The chemical formula for each compound needs to be determined.
Concept introduction:
Ionic compounds are formed between metals and nonmetals. Metal ions with positive charges are called cations and nonmetal ions with negative charges are called anions.

Answer to Problem 8E
The following table shows cations, anions and formula of compounds.
S. no | Name of compound | Cation | Anion | Formula of compound |
a. | Magnesium oxide | Mg2 + | O2- | MgO |
b. | Rubidium bromide | Rb + | Br- | RbBr |
c. | Strontium iodide | Sr2 + | I- | SrI2 |
d. | Beryllium fluoride | Be2 + | F- | BeF2 |
e. | Aluminium chloride | Al3 + | Cl- | AlCl3 |
f. | Lead sulfide | Pb2 + , Pb4 + | S2- | PbS, PbS2 |
Explanation of Solution
Given information:
Following compounds are given.
a. | Magnesium oxide |
b. | Rubidium bromide |
c. | Strontium iodide |
d. | Beryllium fluoride |
e. | Aluminium chloride |
f. | Lead sulfide |
- Magnesium oxide: magnesium belongs to group 2 of the periodic table. It can lose 2 electrons and form cation with 2 positive charges. Oxygen belongs to group 6 and can gain 2 electrons to form anion with 2 negative charges. So one magnesium atom can combine with 1 oxygen atom to form MgO. Total valence electrons are 8. To name the compound, the metal name comes first and then the nonmetal name is changed to “-ide”. So, the name of the compound formed is magnesium oxide .
- Rubidium bromide: Rubidium belongs to group 1 of the periodic table. It can lose 1 electron and form cation with 1 positive charge. Bromine belongs to group 7 and can gain 1 electron to form anion with 1 negative charge. Rubidium has 1 valence electrons and bromine has 7 valence electrons. So 1 rubidium atom can combine with 1 bromine atoms to form RbBr. Total valence electrons are 8. To name the compound, the metal name comes first and then the nonmetal name is changed to “-ide”. So, the name of the compound formed is rubidium bromide .
- Strontium iodide: Strontium belongs to group 2 of the periodic table. It can lose 2 electrons and form 2 positive charges. Iodine belongs to group 7 and can gain 1 electron to form 1 negative charge. Strontium has 2 valence electrons and iodine has 7 valence electrons. So one strontium atom can combine with 2 iodine atoms to form SrI2. Total valence electrons are 16. To name the compound, the metal name comes first and then the nonmetal name is changed to “-ide”. So the name of the compound formed is strontium iodide .
- Beryllium fluoride: Beryllium belongs to group 2 of the periodic table. It can lose 2 electrons and form 2 positive charges. Fluorine belongs to group 7 and can gain 1electron to form 1 negative charge. Beryllium has 2 valence electrons and fluorine has 7 valence electrons. So 1beryllium atom can combine with 2 fluorine atoms to form BeF2. Total valence electrons are 16. To name the compound, the metal name comes first and then the nonmetal name is changed to “-ide”. So the name of the compound formed is beryllium fluoride .
- Aluminum chloride: Aluminium belong to group 3 of the periodic table. It can lose 3 electrons and form cation with three positive charges. Chlorine belongs to group 7 and can gain 1 electron to form anion with one negative charge. So one aluminum atom can combine with 3 chlorine atoms to form AlCl3. Total valence electrons are 24. To name the compound, the metal name comes first and then the nonmetal name is changed to “-ide”. So the name of the compound formed is aluminum chloride .
- Lead sulfide: lead belongs to group 4 of the periodic table. It can lose 4 electrons and form 4 positive charges. Sulfur belongs to group 6 and can gain 2 electrons to form two negative charges. Lead has 4 valence electrons and sulfur has 6 valence electrons. So 1 lead atom can combine with 2 sulfur atoms to form PbS2. Total valence electrons are 16. To name the compound, the metal name comes first and then the nonmetal name s changed to “-ide”. So the name of the compound formed is lead sulfide. Lead also has a valency of 2. So, it can form another compound with sulfur where one atom of lead combines with 1 atom of sulfur forming PbS.
Metals and nonmetals combine to form ionic compounds. The charges on metal cations and nonmetal anions in ionic compounds add up to zero.
Chapter U1 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Chemistry: A Molecular Approach (4th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Anatomy & Physiology (6th Edition)
- 3. Name this ether correctly. H₁C H3C CH3 CH3 4. Show the best way to make the ether in #3 by a Williamson Ether Synthesis. Start from an alcohol or phenol. 5. Draw the structure of an example of a sulfide.arrow_forward1. Which one(s) of these can be oxidized with CrO3 ? (could be more than one) a) triphenylmethanol b) 2-pentanol c) Ethyl alcohol d) CH3 2. Write in all the product(s) of this reaction. Label them as "major" or "minor". 2-methyl-2-hexanol H2SO4, heatarrow_forward3) Determine if the pairs are constitutional isomers, enantiomers, diastereomers, or mesocompounds. (4 points)arrow_forward
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





