
(a)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p64s23d4
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Chromium, Cr
Explanation of Solution
1s2 2s2 2p63s23p64s23d4 - To identify the element one has to simply look at the last subshell; 3d4. This element has valence electrons in subshell 3d. So it belongs to 4th period, d block. Total number of electrons = 24. The superscript number tells the row number of that block; here it is 4 so group is 6(2s + 4d) on the periodic table. The element is hence chromium.
(b)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p2
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Silicon
Explanation of Solution
1s2 2s2 2p63s23p2 - To identify the element one has to simply look at the last subshell; 3p2. This element has valence electrons in subshell 3p. So it belongs to 3rdperiod, in p block. Total number of electrons = 14. The superscript number tells the row number of that block; here it is 2 so group is 14 (2s + 10d + 2p) on the periodic table. The element is hence silicon.
(c)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p3
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Nitrogen
Explanation of Solution
1s2 2s2 2p3 - To identify the element one has to simply look at the last subshell; 2p3. This element has valence electrons in subshell 2p. So it belongs to 2ndperiod, in p block. Total number of electrons = 7. The superscript number tells the row number of that block; here it is 3 so group is 15 (2s + 10d + 3p) on the periodic table. The element is hence nitrogen.
(d)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s1
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Caesium
Explanation of Solution
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s1-To identify the element one has to simply look at the last subshell; 6s1. This element has valence electrons in subshell 6s. So it belongs to 6thperiod, in s block. The superscript number tells the row number of that block; here it is 1 so group is 1 on the periodic table. The element is hence caesium.
(e)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s24f145d106p2-
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Lead
Explanation of Solution
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s24f145d106p2-To identify the element one has to simply look at the last subshell; 3p2. This element has valence electrons in subshell 6p. So it belongs to 6thperiod, in p block. The superscript number tells the row number of that block; here it is 2 so group is 14 (2s + 10d + 2p) on the periodic table. The element is hence lead.
(f)
Interpretation:
The element whose electronic configuration is given has to be identified.
[Kr] 5s24d9
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Silver
Explanation of Solution
[Kr] 5s24d9 - The noble gas that comes before the element is krypton. The last subshell filled is5s2 and 4d9. This element has valence electrons in subshell 5. So it belongs to 5thperiod, in d block. The superscript number tells the row number of that block; here it is 9 so group is 11 (2s + 9d) on the periodic table. The element is hence silver.
Chapter U1 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Anatomy & Physiology (2nd Edition)
- Predict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forward
- The product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forwardExplain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forward
- Protecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forwardExplanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forward
- Show the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





