
(a)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p64s23d4
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Chromium, Cr
Explanation of Solution
1s2 2s2 2p63s23p64s23d4 - To identify the element one has to simply look at the last subshell; 3d4. This element has valence electrons in subshell 3d. So it belongs to 4th period, d block. Total number of electrons = 24. The superscript number tells the row number of that block; here it is 4 so group is 6(2s + 4d) on the periodic table. The element is hence chromium.
(b)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p2
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Silicon
Explanation of Solution
1s2 2s2 2p63s23p2 - To identify the element one has to simply look at the last subshell; 3p2. This element has valence electrons in subshell 3p. So it belongs to 3rdperiod, in p block. Total number of electrons = 14. The superscript number tells the row number of that block; here it is 2 so group is 14 (2s + 10d + 2p) on the periodic table. The element is hence silicon.
(c)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p3
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Nitrogen
Explanation of Solution
1s2 2s2 2p3 - To identify the element one has to simply look at the last subshell; 2p3. This element has valence electrons in subshell 2p. So it belongs to 2ndperiod, in p block. Total number of electrons = 7. The superscript number tells the row number of that block; here it is 3 so group is 15 (2s + 10d + 3p) on the periodic table. The element is hence nitrogen.
(d)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s1
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Caesium
Explanation of Solution
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s1-To identify the element one has to simply look at the last subshell; 6s1. This element has valence electrons in subshell 6s. So it belongs to 6thperiod, in s block. The superscript number tells the row number of that block; here it is 1 so group is 1 on the periodic table. The element is hence caesium.
(e)
Interpretation:
The element whose electronic configuration is given has to be identified.
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s24f145d106p2-
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Lead
Explanation of Solution
1s2 2s2 2p63s23p6 4s23d104p65s24d10 5p66s24f145d106p2-To identify the element one has to simply look at the last subshell; 3p2. This element has valence electrons in subshell 6p. So it belongs to 6thperiod, in p block. The superscript number tells the row number of that block; here it is 2 so group is 14 (2s + 10d + 2p) on the periodic table. The element is hence lead.
(f)
Interpretation:
The element whose electronic configuration is given has to be identified.
[Kr] 5s24d9
Concept introduction:
The electrons in an atom can be arranged in a shorthand notation form called electron configuration. Counting the number of electrons in the electron configuration will help us to know the atomic number of the atom. Each element has a unique atomic number.
The ending gives the exact location of the atom on the periodic table. The subscript tells the period number, the subshell letter tells the block and the superscript number tells the row number of that block.

Answer to Problem 13E
Silver
Explanation of Solution
[Kr] 5s24d9 - The noble gas that comes before the element is krypton. The last subshell filled is5s2 and 4d9. This element has valence electrons in subshell 5. So it belongs to 5thperiod, in d block. The superscript number tells the row number of that block; here it is 9 so group is 11 (2s + 9d) on the periodic table. The element is hence silver.
Chapter U1 Solutions
Living by Chemistry
Additional Science Textbook Solutions
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Anatomy & Physiology (2nd Edition)
- 3. Name this ether correctly. H₁C H3C CH3 CH3 4. Show the best way to make the ether in #3 by a Williamson Ether Synthesis. Start from an alcohol or phenol. 5. Draw the structure of an example of a sulfide.arrow_forward1. Which one(s) of these can be oxidized with CrO3 ? (could be more than one) a) triphenylmethanol b) 2-pentanol c) Ethyl alcohol d) CH3 2. Write in all the product(s) of this reaction. Label them as "major" or "minor". 2-methyl-2-hexanol H2SO4, heatarrow_forward3) Determine if the pairs are constitutional isomers, enantiomers, diastereomers, or mesocompounds. (4 points)arrow_forward
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





