Biochemistry: The Molecular Basis of Life
6th Edition
ISBN: 9780190209896
Author: Trudy McKee, James R. McKee
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 18RQ
Summary Introduction
To review:
Substrate-level phosphorylation, and the two reactions of this category which occur during glycolysis.
Introduction:
Many life-sustaining reactions take place inside the body of an organism. One such reaction is called substrate-level phosphorylation in which the phosphoryl group is transferred from a substrate, for example, phosphoenolpyruvate, to ADP (Adenosine diphosphate) in order to produce ATP (adenosine triphosphate).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Give a detailed account of the tricarboxylic acid pathway and how it is regulated in eukaryotic cells.
could you please help me to write 700 word essay on this topic with examples.
many thanks
In the glyoxylate cycle, two molecules of acetyl-CoA areconverted into _______________ and malate.
_____________ is a small matrix protein that functions as an electron acceptor for dehydrogenases in fatty acid oxidation.
Chapter 8 Solutions
Biochemistry: The Molecular Basis of Life
Ch. 8 - Prob. 1QCh. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Prob. 4QCh. 8 - Prob. 5QCh. 8 - Prob. 6QCh. 8 - Prob. 7QCh. 8 - Prob. 1RQCh. 8 - Prob. 2RQCh. 8 - Prob. 3RQ
Ch. 8 - Prob. 4RQCh. 8 - Prob. 5RQCh. 8 - Prob. 6RQCh. 8 - Prob. 7RQCh. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - Prob. 10RQCh. 8 - Prob. 11RQCh. 8 - Prob. 12RQCh. 8 - Prob. 13RQCh. 8 - Prob. 14RQCh. 8 - Prob. 15RQCh. 8 - Prob. 16RQCh. 8 - Prob. 17RQCh. 8 - Prob. 18RQCh. 8 - Prob. 19RQCh. 8 - Prob. 20RQCh. 8 - Prob. 21RQCh. 8 - Prob. 22RQCh. 8 - Prob. 23RQCh. 8 - Prob. 24RQCh. 8 - Prob. 25RQCh. 8 - Prob. 26RQCh. 8 - Prob. 27RQCh. 8 - Prob. 28RQCh. 8 - Prob. 29RQCh. 8 - Prob. 30RQCh. 8 - Prob. 31RQCh. 8 - Prob. 32RQCh. 8 - Prob. 33RQCh. 8 - Prob. 34RQCh. 8 - Prob. 35RQCh. 8 - Prob. 36RQCh. 8 - Prob. 37RQCh. 8 - Prob. 38RQCh. 8 - Prob. 39RQCh. 8 - Prob. 40FBCh. 8 - Prob. 41FBCh. 8 - Prob. 42FBCh. 8 - Prob. 43FBCh. 8 - Prob. 44FBCh. 8 - Prob. 45FBCh. 8 - Prob. 46FBCh. 8 - Prob. 47FBCh. 8 - Prob. 48FBCh. 8 - Prob. 49FBCh. 8 - Prob. 50SACh. 8 - Prob. 51SACh. 8 - Prob. 52SACh. 8 - Prob. 53SACh. 8 - Prob. 54SACh. 8 - Prob. 55TQCh. 8 - Prob. 56TQCh. 8 - Prob. 57TQCh. 8 - Prob. 58TQCh. 8 - Prob. 59TQCh. 8 - Prob. 60TQCh. 8 - Prob. 61TQCh. 8 - Prob. 62TQCh. 8 - Prob. 63TQCh. 8 - Prob. 64TQCh. 8 - Prob. 65TQCh. 8 - Prob. 66TQCh. 8 - Prob. 67TQCh. 8 - Prob. 68TQCh. 8 - Prob. 69TQCh. 8 - Prob. 70TQCh. 8 - Prob. 71TQCh. 8 - Prob. 72TQCh. 8 - Prob. 73TQ
Knowledge Booster
Similar questions
- Question #15 Which of the following transporters we discussed in this part of the course transports a phosphorylated metabolite? A) The GLUT transporter in liver cells B) The pyruvate transporter involved in the first gluconeogenesis bypass in mitochondria C) Glucose 6-phosphatase D) The G6-P transporter (also known as T1) in liver cells E) The malate transporters involved in the first gluconeogenesis bypass in mitochondria Question # 16: Which of the follou ells to mairarrow_forwardQuestion 1: The overall process enabled by the glyoxylate cycle is: (2acetyl-CoA) + (NAD+) + (2H2O) → (succinate) + (2CoA) + (NADH) + (2H+) Dissect this process further by writing down all of the reactions that are actually involved in making one succinate from two acetyl-CoA units. Show chemical structure for all intermediates.arrow_forwardWhat type of enzyme is phosphofructokinase? And why is it in that category?arrow_forward
- question #47arrow_forwardWhat is the simplest explanation in the notion that phosphofructokinase is a regulated enzyme?arrow_forwardThe enzyme Malate Dehydrogenase (MD) catalyzes the conversion of malate to oxaloacetate using nicotinamide adenine dinucleotide (NAD) as an enzyme cofactor (or coenzyme). Answer the following questions about this reaction. See pp. 462-467 of your textbook for further information. (a) Briefly explain how we know that this reaction (malate → oxaloacetate) is an oxidation- reduction reaction. (b) Write out the two reductive half reactions and indicate the ɛº' for each half reaction. Write out the full balanced reaction for the malate to oxaloacetate reaction and indicate the Ae°l for the reaction. (c) What is the free energy change under standard state conditions (AGº') for this reaction? Which direction is spontaneous?arrow_forward
- The following question focuses on how the parameters regulating enzyme function might change, and how these might appear graphically on a Michaelis-Menten plot and a Lineweaver-Burke plot. Carbonic anhydrase is an enzyme that will convert CO2 and water into HCO3. CO2 + H20 > H+ + HCO3 There are many different isoforms of this enzyme. (see for instance http://en.wikipedia.org/wiki/Carbonic_anhydrase . Imidazol is a competitive inhibitor of carbonic anhydrase. It is effective at an alkaline (high) pH; in lower (more acidic) pH, it no longer inhibits the enzyme. Draw on a separate graph a Lineweaver-Burke plot for the effects of this compound at high pH and low pH. Be sure to label the axes and put in sample data points.arrow_forwardThe following question focuses on how the parameters regulating enzyme function might change, and how these might appear graphically on a Michaelis-Menten plot and a Lineweaver-Burke plot. Carbonic anhydrase is an enzyme that will convert CO2 and water into HCO3. CO2 + H20 > H+ + HCO3 There are many different isoforms of this enzyme. (see for instance http://en.wikipedia.org/wiki/Carbonic_anhydrase . Assume that one variant has a Km of 10 µM and a different variant has a Km of 100 µM. Draw on the same graph a typical Michaelis-Menton plot showing the alteration in the rate of carbonic anhydrase as the CO2 level is varied for the two different variants of enzyme, assuming the concentration of the enzyme (10 mM) in the test tube is kept constant. Assume that you have equal amounts of the two different variants of carbonic anhydrase in a number of test tubes and that the Vmax for both enzymes are the same. Be sure to label the axes. For the same conditions as above, draw a…arrow_forwardThe following question focuses on how the parameters regulating enzyme function might change, and how these might appear graphically on a Michaelis-Menten plot and a Lineweaver-Burke plot. Carbonic anhydrase is an enzyme that will convert CO2 and water into HCO3. CO2 + H20 > H+ + HCO3 There are many different isoforms of this enzyme. (see for instance http://en.wikipedia.org/wiki/Carbonic_anhydrase 1 Assume that one variant has a Km of 10 µM and a different variant has a Km of 100 µM. Draw on the same graph a typical Michaelis-Menton plot showing the alteration in the rate of carbonic anhydrase as the CO2 level is varied for the two different variants of enzyme, assuming the concentration of the enzyme (10 mM) in the test tube is kept constant. Assume that you have equal amounts of the two different variants of carbonic anhydrase in a number of test tubes and that the Vmax for both enzymes are the same. Be sure to label the axes. For the same conditions as above, draw a…arrow_forward
- We saw the oxidation/reduction of malate to/fro oxaloacetate in two pathways that we looked at: _____________________________________ and _________________________.arrow_forwardHexokinase catalyzes the first step of glycolysis, in which glucose is phosphorylated to form glucose‑6‑phosphate. Give two reasons why a Mg2+ cation is required to facilitate this reaction.arrow_forwardWhat are some types of enzyme-catalyzed reactions that require pyridoxal phosphate as a coenzyme?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON