Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.83EP

(a)

Interpretation Introduction

Interpretation:

Structure of alcohol that is formed when the given compound undergoes reduction with molecular hydrogen and nickel catalyst have to be drawn.

Concept Introduction:

In organic chemistry, oxidation reaction is referred to the number CO bonds increase and/or number of CH bonds decrease.

In organic chemistry, reduction reaction is referred to the number CO bonds decrease and/or number of CH bonds increase.

Alcohols undergo oxidation reaction and reduction reaction.  This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom.  Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction.  Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product.  Secondary alcohol undergoes oxidation to give ketone as the product.

Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.

The reverse of oxidation reaction is reduction reaction.  Reduction of aldehyde gives primary alcohol as the product and reduction of ketone gives secondary alcohol as the product.  Reduction can be accomplished using hydrogen gas and a metal catalyst namely nickel.

(b)

Interpretation Introduction

Interpretation:

Structure of alcohol that is formed when the given compound undergoes reduction with molecular hydrogen and nickel catalyst have to be drawn.

Concept Introduction:

In organic chemistry, oxidation reaction is referred to the number CO bonds increase and/or number of CH bonds decrease.

In organic chemistry, reduction reaction is referred to the number CO bonds decrease and/or number of CH bonds increase.

Alcohols undergo oxidation reaction and reduction reaction.  This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom.  Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction.  Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product.  Secondary alcohol undergoes oxidation to give ketone as the product.

Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.

The reverse of oxidation reaction is reduction reaction.  Reduction of aldehyde gives primary alcohol as the product and reduction of ketone gives secondary alcohol as the product.  Reduction can be accomplished using hydrogen gas and a metal catalyst namely nickel.

(c)

Interpretation Introduction

Interpretation:

Structure of alcohol that is formed when the given compound undergoes reduction with molecular hydrogen and nickel catalyst have to be drawn.

Concept Introduction:

In organic chemistry, oxidation reaction is referred to the number CO bonds increase and/or number of CH bonds decrease.

In organic chemistry, reduction reaction is referred to the number CO bonds decrease and/or number of CH bonds increase.

Alcohols undergo oxidation reaction and reduction reaction.  This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom.  Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction.  Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product.  Secondary alcohol undergoes oxidation to give ketone as the product.

Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.

The reverse of oxidation reaction is reduction reaction.  Reduction of aldehyde gives primary alcohol as the product and reduction of ketone gives secondary alcohol as the product.  Reduction can be accomplished using hydrogen gas and a metal catalyst namely nickel.

(d)

Interpretation Introduction

Interpretation:

Structure of alcohol that is formed when the given compound undergoes reduction with molecular hydrogen and nickel catalyst have to be drawn.

Concept Introduction:

In organic chemistry, oxidation reaction is referred to the number CO bonds increase and/or number of CH bonds decrease.

In organic chemistry, reduction reaction is referred to the number CO bonds decrease and/or number of CH bonds increase.

Alcohols undergo oxidation reaction and reduction reaction.  This depends upon the number of hydrogen atoms that is bonded to the alpha carbon atom.  Primary and secondary alcohol undergoes oxidation reaction while tertiary alcohol does not undergo oxidation reaction.  Primary alcohols undergo oxidation to give aldehyde and carboxylic acid as product.  Secondary alcohol undergoes oxidation to give ketone as the product.

Aldehyde undergoes oxidation to give carboxylic acid as the product while ketone does not undergo oxidation reaction.

The reverse of oxidation reaction is reduction reaction.  Reduction of aldehyde gives primary alcohol as the product and reduction of ketone gives secondary alcohol as the product.  Reduction can be accomplished using hydrogen gas and a metal catalyst namely nickel.

Blurred answer
Students have asked these similar questions
Draw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &
Consider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the above
22.16 The following groups are ortho-para directors. (a) -C=CH₂ H (d) -Br (b) -NH2 (c) -OCHS Draw a contributing structure for the resonance-stabilized cation formed during elec- trophilic aromatic substitution that shows the role of each group in stabilizing the intermediate by further delocalizing its positive charge. 22.17 Predict the major product or products from treatment of each compound with Cl₁/FeCl₂- OH (b) NO2 CHO 22.18 How do you account for the fact that phenyl acetate is less reactive toward electro- philic aromatic substitution than anisole? Phenyl acetate Anisole CH (d)

Chapter 4 Solutions

Organic And Biological Chemistry

Ch. 4.4 - Prob. 3QQCh. 4.4 - Prob. 4QQCh. 4.4 - Prob. 5QQCh. 4.5 - Prob. 1QQCh. 4.5 - Prob. 2QQCh. 4.5 - Prob. 3QQCh. 4.5 - Prob. 4QQCh. 4.5 - Prob. 5QQCh. 4.6 - Prob. 1QQCh. 4.6 - Prob. 2QQCh. 4.6 - Prob. 3QQCh. 4.7 - Prob. 1QQCh. 4.7 - Prob. 2QQCh. 4.8 - Prob. 1QQCh. 4.8 - Prob. 2QQCh. 4.9 - Prob. 1QQCh. 4.9 - Prob. 2QQCh. 4.10 - Prob. 1QQCh. 4.10 - Prob. 2QQCh. 4.10 - Prob. 3QQCh. 4.10 - Prob. 4QQCh. 4.11 - Prob. 1QQCh. 4.11 - Prob. 2QQCh. 4.11 - Prob. 3QQCh. 4.11 - Prob. 4QQCh. 4.11 - Prob. 5QQCh. 4.12 - Prob. 1QQCh. 4.12 - Prob. 2QQCh. 4 - Prob. 4.1EPCh. 4 - Prob. 4.2EPCh. 4 - Prob. 4.3EPCh. 4 - In terms of polarity, which carbonyl group atom...Ch. 4 - Prob. 4.5EPCh. 4 - Prob. 4.6EPCh. 4 - Prob. 4.7EPCh. 4 - Prob. 4.8EPCh. 4 - Prob. 4.9EPCh. 4 - Prob. 4.10EPCh. 4 - Prob. 4.11EPCh. 4 - Classify each of the following structures as an...Ch. 4 - Prob. 4.13EPCh. 4 - Prob. 4.14EPCh. 4 - Prob. 4.15EPCh. 4 - Prob. 4.16EPCh. 4 - Prob. 4.17EPCh. 4 - Prob. 4.18EPCh. 4 - Prob. 4.19EPCh. 4 - Prob. 4.20EPCh. 4 - Prob. 4.21EPCh. 4 - Prob. 4.22EPCh. 4 - Prob. 4.23EPCh. 4 - Prob. 4.24EPCh. 4 - Prob. 4.25EPCh. 4 - Prob. 4.26EPCh. 4 - Prob. 4.27EPCh. 4 - Prob. 4.28EPCh. 4 - Name the functional group(s) present in each of...Ch. 4 - Prob. 4.30EPCh. 4 - Prob. 4.31EPCh. 4 - Prob. 4.32EPCh. 4 - Prob. 4.33EPCh. 4 - Prob. 4.34EPCh. 4 - Prob. 4.35EPCh. 4 - Prob. 4.36EPCh. 4 - Draw a structural formula for each of the...Ch. 4 - Prob. 4.38EPCh. 4 - Prob. 4.39EPCh. 4 - Prob. 4.40EPCh. 4 - Draw a structural formula for each of the...Ch. 4 - Prob. 4.42EPCh. 4 - Prob. 4.43EPCh. 4 - Name the functional group(s) present in each of...Ch. 4 - Prob. 4.45EPCh. 4 - Prob. 4.46EPCh. 4 - Prob. 4.47EPCh. 4 - Prob. 4.48EPCh. 4 - Prob. 4.49EPCh. 4 - Give IUPAC names for all saturated...Ch. 4 - Prob. 4.51EPCh. 4 - Prob. 4.52EPCh. 4 - Prob. 4.53EPCh. 4 - Prob. 4.54EPCh. 4 - Prob. 4.55EPCh. 4 - Prob. 4.56EPCh. 4 - Prob. 4.57EPCh. 4 - Prob. 4.58EPCh. 4 - Prob. 4.59EPCh. 4 - Prob. 4.60EPCh. 4 - Prob. 4.61EPCh. 4 - Prob. 4.62EPCh. 4 - Prob. 4.63EPCh. 4 - Prob. 4.64EPCh. 4 - Which member in each of the following pairs of...Ch. 4 - Prob. 4.66EPCh. 4 - Which member in each of the following pairs of...Ch. 4 - Prob. 4.68EPCh. 4 - Prob. 4.69EPCh. 4 - How many hydrogen bonds can form between an...Ch. 4 - Prob. 4.71EPCh. 4 - Prob. 4.72EPCh. 4 - Draw the structure of the alcohol needed to...Ch. 4 - Prob. 4.74EPCh. 4 - Prob. 4.75EPCh. 4 - Prob. 4.76EPCh. 4 - Prob. 4.77EPCh. 4 - Prob. 4.78EPCh. 4 - Prob. 4.79EPCh. 4 - Prob. 4.80EPCh. 4 - Prob. 4.81EPCh. 4 - Which of the following compounds would react with...Ch. 4 - Prob. 4.83EPCh. 4 - Prob. 4.84EPCh. 4 - Which of the three compounds pentanal,...Ch. 4 - Prob. 4.86EPCh. 4 - Prob. 4.87EPCh. 4 - Prob. 4.88EPCh. 4 - Prob. 4.89EPCh. 4 - Prob. 4.90EPCh. 4 - Prob. 4.91EPCh. 4 - Indicate whether each of the following compounds...Ch. 4 - Which carbon atom is the hemiacetal carbon atom in...Ch. 4 - Which carbon atom is the hemiacetal carbon atom in...Ch. 4 - Prob. 4.95EPCh. 4 - Prob. 4.96EPCh. 4 - Prob. 4.97EPCh. 4 - Prob. 4.98EPCh. 4 - Prob. 4.99EPCh. 4 - Indicate whether each of the following compounds...Ch. 4 - Prob. 4.101EPCh. 4 - Prob. 4.102EPCh. 4 - Prob. 4.103EPCh. 4 - Prob. 4.104EPCh. 4 - Prob. 4.105EPCh. 4 - Prob. 4.106EPCh. 4 - Prob. 4.107EPCh. 4 - Name each of the compounds in Problem 15-106 in...Ch. 4 - Prob. 4.109EPCh. 4 - Prob. 4.110EPCh. 4 - Prob. 4.111EPCh. 4 - Prob. 4.112EPCh. 4 - Prob. 4.113EPCh. 4 - Prob. 4.114EPCh. 4 - Prob. 4.115EPCh. 4 - Prob. 4.116EPCh. 4 - Prob. 4.117EPCh. 4 - Prob. 4.118EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning