Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
Question
Book Icon
Chapter 4, Problem 4.38EP

(a)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  1

(a)

Expert Solution
Check Mark

Answer to Problem 4.38EP

The structural formula for 2-methyl-3-pentanone is,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  2

Explanation of Solution

The given name of the compound is 2-methyl-3-pentanone.  From the name it is understood that the parent carbon chain is pentane and it contains five carbon atoms.  The parent chain can be drawn as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  3

From the name of the given ketone, the substituents that are present can be identified.  In this case, the substituent is a methyl group on second carbon atom.  The carbonyl carbon atom is the third carbon atom.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  4

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  5

Conclusion

Structural formula for the given ketone is drawn.

(b)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  6

(b)

Expert Solution
Check Mark

Answer to Problem 4.38EP

The structural formula for 2-pentanone is,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  7

Explanation of Solution

The given name of the compound is 2-pentanone.  From the name it is understood that the parent carbon chain is pentane and it contains five carbon atoms.  The parent chain can be drawn as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  8

From the name of the given ketone, the substituents that are present can be identified.  In this case, there are no substituents.  The carbonyl carbon atom is the second carbon atom..

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  9

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  10

Conclusion

Structural formula for the given ketone is drawn.

(c)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  11

(c)

Expert Solution
Check Mark

Answer to Problem 4.38EP

The structural formula for bromopropanone is,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  12

Explanation of Solution

The given name of the compound is bromopropanone.  From the name it is understood that the parent carbon chain is propane and it contains three carbon atoms.  The parent chain can be drawn as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  13

From the name of the given ketone, the substituents that are present can be identified.  In this case a bromine atom is present as a substituent.  The carbonyl carbon atom is the second carbon atom as that is the only possibility.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  14

Carbon atom has a valence of four.  Hence, carbon atom can form four covalent bonds.  The remaining bonds are satisfied by hydrogen atom.  The structure is obtained as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  15

Conclusion

Structural formula for the given ketone is drawn.

(d)

Interpretation Introduction

Interpretation:

Structural formula for the given ketone has to be drawn.

Concept Introduction:

Structure of the ketone can be drawn from the IUPAC name.  In the IUPAC name, the parent chain of carbon atom can be identified and then the substituents present in it can also be identified.  With these information, the structure for the given compound can be drawn.  In a ketone the counting has to be done so that the carbonyl carbon atom gets the least numbering.

The structural representation of organic compound can be done in 2D and 3D.  In two-dimensional representation, there are four types of representation in which an organic compound can be drawn.  They are,

  • • Expanded structural formula
  • • Condensed structural formula
  • • Skeletal structural formula
  • • Line-angle structural formula

Structural formula which shows all the atoms in a molecule along with all the bonds that is connecting the atoms present in the molecule is known as Expanded structural formula.

Structural formula in which grouping of atoms are done and in which the central atoms along with the other atoms are connected to them are treated as group is known as Condensed structural formula.

Structural formula that shows the bonding between carbon atoms alone in the molecule ignoring the hydrogen atoms being shown explicitly is known as Skeletal structural formula.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  16

(d)

Expert Solution
Check Mark

Answer to Problem 4.38EP

The structural formula for cyclopentanone is,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  17

Explanation of Solution

The given name of the compound is cyclopentanone.  From the name it is understood that the parent carbon chain is cyclic carbon chain that contains five carbon atoms.  The parent chain can be drawn as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  18

From the name of the given ketone, the substituents that are present can be identified.  In this case, there are no substituents.  The carbonyl carbon atom is any one of the carbon atom.  Therefore, the structural formula of cyclopentanone can be drawn as shown below,

Organic And Biological Chemistry, Chapter 4, Problem 4.38EP , additional homework tip  19

Conclusion

Structural formula for the given ketone is drawn.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The table includes macrostates characterized by 4 energy levels (&) that are equally spaced but with different degrees of occupation. a) Calculate the energy of all the macrostates (in joules). See if they all have the same energy and number of particles. b) Calculate the macrostate that is most likely to exist. For this macrostate, show that the population of the levels is consistent with the Boltzmann distribution. macrostate 1 macrostate 2 macrostate 3 ε/k (K) Populations Populations Populations 300 5 3 4 200 7 9 8 100 15 17 16 0 33 31 32 DATO: k = 1,38×10-23 J K-1
Don't used Ai solution
In an experiment, the viscosity of water was measured at different temperatures and the table was constructed from the data obtained. a) Calculate the activation energy of viscous flow (kJ/mol). b) Calculate the viscosity at 30°C. T/°C 0 20 40 60 80 η/cpoise 1,972 1,005 0,656 0,469 0,356

Chapter 4 Solutions

Organic And Biological Chemistry

Ch. 4.4 - Prob. 3QQCh. 4.4 - Prob. 4QQCh. 4.4 - Prob. 5QQCh. 4.5 - Prob. 1QQCh. 4.5 - Prob. 2QQCh. 4.5 - Prob. 3QQCh. 4.5 - Prob. 4QQCh. 4.5 - Prob. 5QQCh. 4.6 - Prob. 1QQCh. 4.6 - Prob. 2QQCh. 4.6 - Prob. 3QQCh. 4.7 - Prob. 1QQCh. 4.7 - Prob. 2QQCh. 4.8 - Prob. 1QQCh. 4.8 - Prob. 2QQCh. 4.9 - Prob. 1QQCh. 4.9 - Prob. 2QQCh. 4.10 - Prob. 1QQCh. 4.10 - Prob. 2QQCh. 4.10 - Prob. 3QQCh. 4.10 - Prob. 4QQCh. 4.11 - Prob. 1QQCh. 4.11 - Prob. 2QQCh. 4.11 - Prob. 3QQCh. 4.11 - Prob. 4QQCh. 4.11 - Prob. 5QQCh. 4.12 - Prob. 1QQCh. 4.12 - Prob. 2QQCh. 4 - Prob. 4.1EPCh. 4 - Prob. 4.2EPCh. 4 - Prob. 4.3EPCh. 4 - In terms of polarity, which carbonyl group atom...Ch. 4 - Prob. 4.5EPCh. 4 - Prob. 4.6EPCh. 4 - Prob. 4.7EPCh. 4 - Prob. 4.8EPCh. 4 - Prob. 4.9EPCh. 4 - Prob. 4.10EPCh. 4 - Prob. 4.11EPCh. 4 - Classify each of the following structures as an...Ch. 4 - Prob. 4.13EPCh. 4 - Prob. 4.14EPCh. 4 - Prob. 4.15EPCh. 4 - Prob. 4.16EPCh. 4 - Prob. 4.17EPCh. 4 - Prob. 4.18EPCh. 4 - Prob. 4.19EPCh. 4 - Prob. 4.20EPCh. 4 - Prob. 4.21EPCh. 4 - Prob. 4.22EPCh. 4 - Prob. 4.23EPCh. 4 - Prob. 4.24EPCh. 4 - Prob. 4.25EPCh. 4 - Prob. 4.26EPCh. 4 - Prob. 4.27EPCh. 4 - Prob. 4.28EPCh. 4 - Name the functional group(s) present in each of...Ch. 4 - Prob. 4.30EPCh. 4 - Prob. 4.31EPCh. 4 - Prob. 4.32EPCh. 4 - Prob. 4.33EPCh. 4 - Prob. 4.34EPCh. 4 - Prob. 4.35EPCh. 4 - Prob. 4.36EPCh. 4 - Draw a structural formula for each of the...Ch. 4 - Prob. 4.38EPCh. 4 - Prob. 4.39EPCh. 4 - Prob. 4.40EPCh. 4 - Draw a structural formula for each of the...Ch. 4 - Prob. 4.42EPCh. 4 - Prob. 4.43EPCh. 4 - Name the functional group(s) present in each of...Ch. 4 - Prob. 4.45EPCh. 4 - Prob. 4.46EPCh. 4 - Prob. 4.47EPCh. 4 - Prob. 4.48EPCh. 4 - Prob. 4.49EPCh. 4 - Give IUPAC names for all saturated...Ch. 4 - Prob. 4.51EPCh. 4 - Prob. 4.52EPCh. 4 - Prob. 4.53EPCh. 4 - Prob. 4.54EPCh. 4 - Prob. 4.55EPCh. 4 - Prob. 4.56EPCh. 4 - Prob. 4.57EPCh. 4 - Prob. 4.58EPCh. 4 - Prob. 4.59EPCh. 4 - Prob. 4.60EPCh. 4 - Prob. 4.61EPCh. 4 - Prob. 4.62EPCh. 4 - Prob. 4.63EPCh. 4 - Prob. 4.64EPCh. 4 - Which member in each of the following pairs of...Ch. 4 - Prob. 4.66EPCh. 4 - Which member in each of the following pairs of...Ch. 4 - Prob. 4.68EPCh. 4 - Prob. 4.69EPCh. 4 - How many hydrogen bonds can form between an...Ch. 4 - Prob. 4.71EPCh. 4 - Prob. 4.72EPCh. 4 - Draw the structure of the alcohol needed to...Ch. 4 - Prob. 4.74EPCh. 4 - Prob. 4.75EPCh. 4 - Prob. 4.76EPCh. 4 - Prob. 4.77EPCh. 4 - Prob. 4.78EPCh. 4 - Prob. 4.79EPCh. 4 - Prob. 4.80EPCh. 4 - Prob. 4.81EPCh. 4 - Which of the following compounds would react with...Ch. 4 - Prob. 4.83EPCh. 4 - Prob. 4.84EPCh. 4 - Which of the three compounds pentanal,...Ch. 4 - Prob. 4.86EPCh. 4 - Prob. 4.87EPCh. 4 - Prob. 4.88EPCh. 4 - Prob. 4.89EPCh. 4 - Prob. 4.90EPCh. 4 - Prob. 4.91EPCh. 4 - Indicate whether each of the following compounds...Ch. 4 - Which carbon atom is the hemiacetal carbon atom in...Ch. 4 - Which carbon atom is the hemiacetal carbon atom in...Ch. 4 - Prob. 4.95EPCh. 4 - Prob. 4.96EPCh. 4 - Prob. 4.97EPCh. 4 - Prob. 4.98EPCh. 4 - Prob. 4.99EPCh. 4 - Indicate whether each of the following compounds...Ch. 4 - Prob. 4.101EPCh. 4 - Prob. 4.102EPCh. 4 - Prob. 4.103EPCh. 4 - Prob. 4.104EPCh. 4 - Prob. 4.105EPCh. 4 - Prob. 4.106EPCh. 4 - Prob. 4.107EPCh. 4 - Name each of the compounds in Problem 15-106 in...Ch. 4 - Prob. 4.109EPCh. 4 - Prob. 4.110EPCh. 4 - Prob. 4.111EPCh. 4 - Prob. 4.112EPCh. 4 - Prob. 4.113EPCh. 4 - Prob. 4.114EPCh. 4 - Prob. 4.115EPCh. 4 - Prob. 4.116EPCh. 4 - Prob. 4.117EPCh. 4 - Prob. 4.118EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning