Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.6P
Using the thermal resistance relations developed in Chapter 3, determine shape factor expressions for the following geometries:
- Plane wall, cylindrical shell, and spherical shell.
- Isothermal sphere of diameter D buried in an infinite medium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hi, kindly solve this problem and show the solution. Thank you
Find the interface temperatures of the layers,ASAP
Hi, kindly help me with this and show the complete solution. Thank you
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A hollow sphere with inner and outer radii of R1 and R2, respectively, is covered with a layer of insulation having an outer radius of R3. Derive an expression for the rate of heat transfer through the insulated sphere in terms of the radii, the thermal conductivities, the heat transfer coefficients, and the temperatures of the interior and the surrounding medium of the sphere.arrow_forwardA section of a composite wall with the dimensions shown below has uniform temperatures of 200C and 50C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA=70W/mK,kB=60W/mK, kC=40W/mK, and kP=20W/mK, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. Repeat Problem 1.34, including a contact resistance of 0.1 K/W at each of the interfaces.arrow_forward1. A simple cavity wall consists of two brick layers separated by an air gap of 50 mm. If the inside air temperature is 20oC and the ambient outside temperature is 5 oC, calculate the heat flux through the wall. Bricks are 100 mm thick with thermal conductivity kbrick = 0.5 W/m K, hin = 10 W/m2 K, hout = 20 W/m2 K. The internal air cavity can be considered still (no convection) with kair = 0.015 W/m K. 2. On a day in winter, the outside air temperature drops to -5 oC and the outside convective heat transfer changes to hout = (2 x V) + 8.9 W/m2 K. If the outside wind speed gusts at 50 kph, calculate the change in heat flux for the wall in question 3.arrow_forward
- A composite wall is composed of 8 in. of fire-clay brick, 6 in. of chrome brick, and4 in. of common brick. The inside wall surface temperature is 2000"F, and the outsidesurface temperature is 300"F. Determine (a) the heat loss per ft2 of wall area; (b) thetemperatures at the brick interfaces; (c) the temperature 8 in. in from the outer surface.arrow_forwardNuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rodarrow_forwardPls handwritearrow_forward
- A small stainless-steel rod 7 mm in diameter was heated so it is at 300 °C. It is quenched in a bath of room temperature water, where it has a heat transfer coefficient of 30 W/m2K. How long will it take to be cool to the touch? Justify your answer and all assumptions. (You will generate a time constant and the Bi for this problem.arrow_forwardA nickel plate 0.8 cm thick has a temperature difference of 64°C between its faces. It transmits 200kcal/hr through an area of 10cm2. Calculate the thermal conductivity of nickel in cgs units. COMPLETE FBD SOLUTION AND REQUIREMENTS PS. THIS IS A HEAT TRANSFER PROBLEMarrow_forwardOne more time. PLEASE explain how the integral is formed, dT/dr doesn't make sense. Why we are replacing L with dr? dr is in radial direction and L is in the vertical direction.arrow_forward
- Consider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forwardA hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of insulating materials. The inner and outer radii of the sphere are o.18 and o.21 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a thickness of o.15 m. The system is in a room for which the air temperature is 20°C and the convection coefficient at the outer surface of the insulation is 30 W/m2. K. If 80 W is dissipated by the heater under steady-state conditions, what is the thermal conductivity of the insulation?arrow_forwardAfter a thorough derivation by Doraemon to establish an equation for cylindrical fuel rod of a nuclear reactor. Here he was able to come up an equation of heat generated internally as shown below. 9G = 9. where qG is the local rate of heat generation per unit volume at radius r, ro is the outside radius, and qo is the rate of heat generation per unit volume at the centre line. Calculate the temperature drop from the centre line to the surface for a 2.5 cm outer diameter rod having k = 25 W/m K, if the rate of heat removal from the surface is 1650 kW/m² А) 619°C В 719 °C C) 819 °C D) 919 °C E 1019 °C F None of thesearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license