An aluminum heat sink
If
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Fundamentals of Heat and Mass Transfer
- Heat Transferarrow_forwardAnswer this ASAP The diameter of the tube is 25 mm. The specific heat of water is 4.18 kJ/kg.°C. The overall heat transfer coefficient is 0.7 kW/m².°C. 1. Schematic of temperature distribution 2.ΔTLMTD 3.Actual heat transfer rate 4.Cmin 5.Maximum heat transfer ratearrow_forwardTo cool hot oil, an engineer has suggested that the oil be pumped through a pipe submerged in a nearby lake. The pipe (external diameter = 15 cm) will be placed in the horizontal direction. The temperature of the outer surface of the pipe averages 125 ° C. The surrounding water temperature is assumed to be constant at 15 ° C. Pipe length 125 m. If it is assumed that there is no water movement. a. Determine the convective heat transfer coefficient of the outer pipe surface to the water. = Answer Watt / (m² ° C) b. Determine the heat transfer rate from the pipe to the water. = Answer kWarrow_forward
- In a cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: g(r) = g_0 [1 - (r/b)^2] W/m^3 where b is the radius of the fuel element and g_0 is constant. The boundary surface at r = b is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius b = 2 cm, the thermal conductivity k = 10 W/m middot K and g_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.arrow_forward(heat transfer ) thanks The velocity of the fluid flowing in parallel over a 500mmx500mm flat heater surface is U= 19 m/s and the inlet velocity temperature is T_∞15 C. The surface temperature of this plate is T_s140 C, the friction force is F_D=0.4 N and the surface area of the plate is A=0.32 m2. According to this;(F_D= 0.4N A=32 m2)a) Surface shear stressb) Find the coefficient of frictionc) Heat transfer coefficientd) What is the amount of heat transfer (electric power) that must be given to maintain a constant surface temperature?arrow_forwardTo cool hot oil, an engineer has suggested that the oil be pumped through a pipe submerged in a nearby lake. The pipe (external diameter = 15 cm) will be placed in the horizontal direction. The temperature of the outer surface of the pipe averages 125 ° C. The surrounding water temperature is assumed to be constant at 15 ° C. Pipe length 100 m. If it is assumed that there is no water movement. a. Determine the convective heat transfer coefficient of the outer pipe surface to the water. = ..... Watt / (m² ° C) b. Determine the heat transfer rate from the pipe to the water. = ..... kWarrow_forward
- Water enters a tube at 29°C with a flow rate of 460 kg/h. The rate of heat transfer from the tube wall to the fluid is given as qs′(W/m)=ax, where the coefficient a is 25 W/m2 and x(m) is the axial distance from the tube entrance. (a) Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution Tm(x) of the water. (b) What is the outlet temperature of the water for a heated section 31 m long? (c) Sketch the mean fluid temperature, Tm(x), and the tube wall temperature, Ts(x), as a function of distance along the tube for fully developed and developing flow conditions. (d) What value of a uniform wall heat flux, qs″ (instead of qs′=ax), would provide the same fluid outlet temperature as that determined in part 8.13b? For this type of heating, sketch the temperature distributions requested in part 8.13c.arrow_forward1 - A square chip, with side w = 5 mm, operates under isothermal conditions.The chip is positioned on a substrate so that its side and bottom surfaces are thermally insulated, while its top surface is exposed to theflow of a refrigerant at T∞ = 15°C. From reliability considerations, the chip temperature cannot exceed T = 85°C. The refrigerant being air, with a convection heat transfer coefficientcorresponding h = 200 W/(m2K), what is the maximum allowable power for the chip? Since the coolant is a dielectric liquid for which h = 3000 W/(m²K), what is the maximum allowed power?arrow_forwardDetermine conductive resistance (in K/W) of a 80 m^2 plane wall composed of 2 layers: Layer 1: brick, thickness δ1 = 620 mm, thermal conductivity λ1 = 0.310 W/(m.K) Layer 2: EPS, thickness δ2 = 52 mm, thermal conductivity λ2 = 0.026 W/(m.K) Evaluate the heat loss through this wall if indoor temperature is 22 C and outdoor temperature is -18 C.arrow_forward
- A nuclear reactor is cooled by liquid sodium. The liquid sodium has the following properties: dynamic viscosity = 0.41 mPa·s, specific heat capacity = 1.2 kJ/kgK, thermal conductivity 82 W/mK. Which of the following statements is correct for this scenario? please explain A The thermal boundary layer is thicker than the hydraulic boundary layer. B Heat is transferred through the fluid more easily than momentum. C The velocity varies significantly from the surface to the thickness of the thermal boundary layer. D The hydraulic boundary layer is thicker than the thermal boundary layer.arrow_forwardAn incompressible fluid flows through a rectangular cross section duct, with width much larger than height of the cross section. The duct surface is heated at a uniform rate along its length. If the centreline of the flow is along the centre of the duct where y = 0, the distance from the centreline to the surface of the duct is b = 25 mm, and the thermal conductivity of the fluid is 0.6 W/mK, what is the local heat transfer coefficient in the developed region of the flow? Give your answer in W/m2K to 1 decimal place. I AM POSTIING THIS AGAIN. PLEASE STOP ? COPY FROM INTERNET AND SEND RANDOM SOLUTION. HINT THE FINAL ANSWER IS 38.4 But i need step by step solution. if you don't get this value don't send it please, reject and add the creditarrow_forwardAn incompressible fluid flows through a rectangular cross section duct, with width much larger than height of the cross section. The duct surface is heated at a uniform rate along its length. If the centreline of the flow is along the centre of the duct where y = 0, the distance from the centreline to the surface of the duct is b = 25 mm, and the thermal conductivity of the fluid is 0.6 W/mK, what is the local heat transfer coefficient in the developed region of the flow? Give your answer in W/m2K to 1 decimal place.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning