Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4S.7P
Hollow prismatic bars fabricated from plain carbon steel are 1 m long with top and bottom surfaces, as well as both ends. well insulated. For each bar. find the shape factor and the heat rate per unit length of the bar when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There’s a bridge with a span of 1275 m long at its coldest. The bridge is exposed to temperatures ranging from –15ºC to 40ºC. What is its change in length between these temperatures? Assume that the bridge is made entirely of steel. Coefficient of linear expansion, α, for steel is 12 × 10– 6 / ºC
One more time. PLEASE explain how the integral is formed, dT/dr doesn't make sense. Why we are replacing L with dr? dr is in radial direction and L is in the vertical direction.
One end of a 40 cm metal rod 2.0 cm2 in cross section is in a steam bath while the other end is embedded in ice. It is observed that 13.3 grams of ice melted in 15 minutes from the heat conducted by the rod. What is the thermal conductivity of the rod.
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One end of a 40 cm metal rod 2.0 cm2 in cross section is in a steam bath while the other end is embedded in ice. It is observed that 13.3 grams of ice melted in 15 minutes from the heat conducted by the rod. What is the thermal conductivity of the rod. (INCLUDE FBD)arrow_forwardMica sheet of 0.15 m diameter and has thickness of 0.005m is subjected to heater with a supply of 28W power. Cold water is circulated around the specimen with a temperature of 30°C; calculate the thermal conductivity of the specimen?arrow_forwardjust aarrow_forward
- Please provide step-by-step calculations, also draw the nodes showing temperatures l A rectangular cross-section bar is held in steady conditions at different temperatures on each of its 4 sides. There is no internal heat generation, and the material properties are constant in all directions at all temperatures. The cross section has an aspect ratio of 1.5, with its longest side measuring 2.5 m in the x direction. It is split into 4 nodes in the x direction and 3 nodes in the y direction. The node numbering starts from (1,1) in the bottom left hand corner. The temperatures of the faces are held constant as follows: left hand side = 428 K, right hand side = 506 K, top side = 367 K, and bottom side = 298 K. The initial guess for the temperature of the internal nodes is 301 K. Using the Jacobi method to iterate, complete the following sentences. a) The temperature of node (3,2) after the 2nd iteration is _____ K. b) The temperature of node (3,2) after the 3rd iteration is _____ K.arrow_forwardAn eyed plate & pin is assembled as illustrated and are subjected to an opposing force of 10KN. The rod diameter & plate thickness is 6mm. The width of the plate is 20mm. A hole to which the pin is inserted is 8mm in diameter is located at the center of the plate. The plate is made of annealed SAE 1025 & the pin is high-heat oil quenched SAE 1095. (a) Determine if the assembly is safe to use; otherwise (b) Determine the safe load of the assembly.arrow_forwardcomposite protective wall is formed of a 1 in copper plate, a 1/8 in layer of asbestos, a 2 in layer of fiberglass. The thermal conductivities of the materials in units of BTU/hr-ft-F are 240, 0.048 and 0.022 respectively. The overall temperature difference across the wall is 500 F. Calculate the heat transfer per unit area through the composite structure.arrow_forward
- The Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.0 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.0 mm thick and had a diameter of 1.0 cm. You know that the chip is designed to run below 70 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…arrow_forwardB5arrow_forwardA square piece is initially at 10 degrees Celsius everywhere. Each side is 0.05 m long. Then the four sides are instantly heated up to 25 degrees Celsius, 50 degrees Celsius, 30 degrees Celsius, and 0 degrees Celsius. a. Find how long it takes for the temperature profile of this square to become steady if the material is copper. What is the final temperature at the center of the square? b. Find how long it takes for the temperature profile of this square to become steady if the material is air. What is the final temperature at the center of the square? c. Which material takes longer to reach steady state and why?arrow_forward
- A small stainless-steel rod 7 mm in diameter was heated so it is at 300 °C. It is quenched in a bath of room temperature water, where it has a heat transfer coefficient of 30 W/m2K. How long will it take to be cool to the touch? Justify your answer and all assumptions. (You will generate a time constant and the Bi for this problem.arrow_forwardDefine the thermal conductivities of some materials at room conditionsarrow_forwardA steel rod, 12 mm in diameter, passes centrally through a copper tube 2.5 m long and having 36 mm and 48 mm as internal and external diameters respectively. The tube is closed at each end by 24 mm thick steel plates which are secured by nuts. The nuts are tightened until the copper tube is reduced in length by 0.50. The whole assembly is then raised in temperature by 60 degrees Celsius. Steel: Coefficient of expansion = 1.2x10^-5/degrees Celsius, Es = 200 GPa Copper: Coefficient of expansion = 1.75x10^-5/degrees Celsius, Ec = 100 GPa Calculate the stress in copper and stress in steel after the rise of temperature if the thickness of the plates remains unchanged. Indicate if the answer is tensile, tension, compression.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license