Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.48P
To determine
Expression for heat rate per unit length normal to page crossing isothermal boundary.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The initial temperature distribution of a 5 cm long stick is given by the
following function. The circumference of the rod in question is completely
insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat
conduction along the rod as a function of time and position ? (x =
1.752 cm²/s for the bar in question)
100
A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ +
1
3π
TC3
.....)
100
t + ··· .......
13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t
B)
3/3
t + …............)
C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t
–
D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t
E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+
t + ··· .........)
t +....
t + ··· .........)
…..)
Q1
Passage of an electric current through a long conducting
rod of radius r; and thermal conductivity k, results in
uniform volumetric heating at a rate of ġ. The conduct-
ing rod is wrapped in an electrically nonconducting
cladding material of outer radius r, and thermal conduc-
tivity k, and convection cooling is provided by an
adjoining fluid.
Conducting
rod, ġ, k,
11
To
Čladding, ke
For steady-state conditions, write appropriate forms of
the heat equations for the rod and cladding. Express ap-
propriate boundary conditions for the solution of these
equations.
A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation:
+-=
dx2 =0
W
where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that
m-K
T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the
temperature at nodes 3 and 4.
Insulated
Ar
, T
For the answer window, enter the temperature at node 4 in Kelvin (K).
Your Answer:
EN
SORN
Answer
units
Pri
qu) 232 PM
4/27/2022
99+
66°F Sunny a .
20
ENLARGED
oW TEXTURE
PRT SCR
IOS
DEL
F8
F10
F12
BACKSPACE
num
-
%3D
LOCK
HOME
PGUP
170
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. The slab shown is embedded in insulating materials on five sides, while the front face experiences convection off its face. Heat is generated inside the material by an exothermic reaction equal to 1.0 kW/m'. The thermal conductivity of the slab is 0.2 W/mk. a. Simplify the heat conduction equation and integrate the resulting ID steady form of to find the temperature distribution of the slab, T(x). b. Present the temperature of the front and back faces of the slab. n-20- 10 cm IT- 25°C) 100 cm 100 cmarrow_forwardDo fast i will give you good ratearrow_forwardquestion is imagearrow_forward
- Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forwardThe following figure shows a coffee thermos as a lumped thermal system. Derive the symbolic expression using the given parameters for the temperature change rate of the coffee dT/dt (10 Ambient Temperature Ta Thermos Thickness L Surface area A Conductivity k Connectivity with air h₂ Coffee Temperature T Thermal capacitance C Connectivity with the thermos h₁arrow_forwardI want to answer all the questions by handwriting.arrow_forward
- 2. Consider the temperature distributions associated with a dx differential control volume within the one-dimensional plane walls shown below. T(x,00) T\x,00) * dx * dx (a) (Б) Tx,1) T(x,1) * dx dx (c) (d) (a) Steady-state conditions exist. Is thermal energy being generated within the differential control volume? If so, is the generation rate positive or negative? (b) Steady-state conditions exist as in part (a). Is the volumetric generation rate positive or negative within the differential control volume? (c) Steady-state conditions do not exist, and there is no volumetric thermal energy generation. Is the temperature of the material in the differential control volume increasing or decreasing with time? (d) Transient conditions exist as in part (c). Is the temperature increasing or decreasing with time?arrow_forwardOne of the strengths of numerical methods is their ability to handle complex boundary conditions. In the sketch, the boundary condition changes from specified heat flux ′′ qs (into the domain) to convection, at the location of the node (m, n). Write the steady-state, two- dimensional finite difference equation at this node.arrow_forwardHello sir Can you solve this problem because i did'nt understand about subject (heat transfer)arrow_forward
- Which formula is used to calculate the heat conduction in the AXIAL direction in a vertically located pipe segment whose inner and outer surfaces are perfectly insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature, Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on the lower surface, Ty the temperature on upper surface. Tu r; Tro rarrow_forwardYou have a 1-D steady-state conduction problem, constant thermal properties, with energy generation q_dot. The material is 4.0 cm thick and has a constant thermal conductivity of k = 65.0 (W/m-k). The temperature distribution within the object is: T(x) = a + bx^2 a = 100 Celcius b = -1000 Celcius/m^2 Starting with the Heat Diffusion Equation and using the data given above, determine the following: • Determine the heat generation rate q_dot within the wall. • Determine the heat flux q" at x=0 and at x=L.arrow_forwardPlease show all work for this mechnical measure problem. Not Ai generated the answers have been wrong I need to understand.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license