Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.19P
Hot water at 85°C flows through a thin-walled copper tube of 30-mm diameter. The tube is enclosed by an eccentric cylindrical shell that is maintained at 35°C and has a diameter of 120 mm. The eccentricity, defined as the separation between the centers of the tube and shell, is 20 mm. The space between the tube and shell is filled with an insulating material having a thermal conductivity of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Heat Transfer with a Liquid Metal. The liquid metal bismuth at a flow rate of 2.00 kg/s enters a tube having an inside diameter of 35 mm at 425°C and is heated to 430°C in the tube. The tube wall is maintained at a temperature of 25°C above the liquid bulk temperature. Calculate the tube length required. The physical properties are as follows (H1): k = 15.6 W/m K, c,=149 J/kg K, u = 1.34 x 10-3 Pa s.
The cylindrical pipe with a thread diameter of 0.070 m and an internal diameter of 0.050 m is insulated both internally and externally. Calculate the heat loss per unit length of the pipe (1 m) when the inner surface temperature of the pipe is kept at 50 °C and the outer surface temperature at 20 °C (Average thermal conductivity constant = Km= 0.172 J/cm.s.K).
Heat transfer
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the quantity of heat conducted per minute through a duralumin circular disc 127 mm diameter and 19 mm thick when the temperature drop across the thickness of the plate is 5 degrees Celsius. Take the coefficient of thermal conductivity of duralumin as 150 W/(m-K).arrow_forwardA thick-walled cylindrical tubing of hard rubber (k=0.151 W/m*K) having an inside radius of 5 mm and an outside radius of 20 mm is being used as a temporary cooling coil in a bath. Ice water is flowing rapidly inside, and the inside wall temperature is 275 K. The outside surface temperature is 300 K. A total of 20 W must be removed from the bath by the cooling coil. How many meter of tubing are needed?arrow_forwardURGENTarrow_forward
- A long copper cylinder 0.6 m in diameter and initially at a uniform temperature of 38oC is placed in a water bath at 93oC. Assuming that the heat transfer coefficient between the copper and the water is 1248 W/(m2 * K), calculate the time required to heat the center of the cylinder to 66oC. As a first approximation, neglect the temperature gradient within the cylinder; then repeat your calculation without this simplifying assumption and compare your results.arrow_forwardA spherical shaped vessel of 1.4 m outer diameter is 90 mm thick. Find the rate of heat leakage, if the temperature difference between the inner and outer surfaces is 220°C. Thermal conductivity of the material of the sphere is 0.083 W/mK.arrow_forwardGive step by step answer and. Cleararrow_forward
- Air at 4 °C is being carried within a metal cylindrical pipe to astorage room at a bioprocessing facility, where a heat-sensitive protein product must be stored until it is transferred to another facility. The outer diameter of the pipe is 400 mm, and the thickness of the pipe is 2 mm. The pipe is installed within a larger room where the room temperature is kept at 20°C. There is a layer of insulating material around the metal pipe. Thermal conductivity of the metal pipe is 60 W/m*K, whereas the thermal conductivity of the insulating material is 0.04 W/m*K. Heat gain by the air being transported occurs at a steady rate of 40 W. A while later, it becomes necessary to reduce the temperature of the flowing air down to 0 °C for another protein product. By how much (in percentages) should the insulation material thickness should increase in order to maintain this air temperature within the pipe? Assume the inner surface temperature of the metal pipe is equal to the air temperature in the…arrow_forward1. Heat Loss from saturated steam at 121.1°C. The line is covered with 25.4 mm of insulation. Assuming that the inside surface temperature of the metal wall is at 121.1°C and the outer sur- face of the insulation is at 26.7°C, calculate the heat loss for 30.5 m of pipe. Also, calculate the kg of steam condensed per hour in the pipe due to the heat loss. The average k for steel from Appendix A.3 is 45 W/m K and the k for the insulation is 0.182. a Steam Pipeline. A steel pipeline, 2-in. Schedule 40 pipe, contains A 381 Stearrow_forwardSteel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to delivering steam with a pressure of 600 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 10 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Hourly heat loss ... (kj / hr)b. temperature between insulation layers ... (° C.)arrow_forward
- Please I want the correct answer DONT't copy the previous answers here they are wrong 922 W is wrong answer pleasearrow_forwardSteel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to deliver steam with a pressure of 500 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 12 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Heat loss per hour. = Answer kJ / hour. b. Temperature between insulation layers. = Answer ° C.arrow_forwardA fluid has a temperature of 100C and thermal film coefficient of 50 W/m^2-K. Solve for the heat transferred per sq m of contact if the surface it is in contact with has a surface temperature of 20C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license