Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.32P

In Chapter 3 we that, whenever fins are attached to a base material, the base temperature is unchanged. What in fact happens is that, if the temperature of the base material exceeds the fluid temperature, attachment of a fin depresses the junction temperature T j below the original temperature of the base, and heat flow from the base material to the fin is two-dimensional.
Chapter 4, Problem 4.32P, In Chapter 3 we that, whenever fins are attached to a base material, the base temperature is

Consider conditions for which a long aluminum pin fin of diameter D = 5 mm is attached to a base material whose temperature far from the junction is maintained at T b = 100 ° C . Fin convection conditions correspond to h = 50 W/m 2 K and T = 25 ° C .

  1. What are the fin heat rate and junction temperature when the base material is (i) aluminum ( k = 240 W/m K ) and (ii) stainless steel ( k = 15 W/m K ) ?
  2. Repeat the foregoing calculations if a thermal contact resistance of R t , j n = 3 × 10 5 m 2 K/W is associated with the method of joining the pin fin to the base material.
  3. Considering the thermal contact resistance, plot the heat rate as a function of the convection coefficient over the range 10 h 100 W/m 2 K for each of the two materials.

Blurred answer
Students have asked these similar questions
The rate at which energy must be dissipated away from single integrated circuits (computer chips) continues to increase as transitors continue to shrink in size and more and more computations are being completed in smaller and smaller volumes. The maximum chip temperature, however, has not changed much over time and remains around Tc = 75 °C. To increase the rate of dissipation of thermal energy away from a new chip, it is proposed to add a 5 x 5 array of copper pin fins to the chip. Each fin will be individually joined to the chip surface such that there is a minimal contact resistance between the fin and the chip. The diameter of the fins is df = 1 mm and the length is Lf = 15 mm. The chip is square, with a side length of W= 15 mm. It is so thin that it can be treated as having a single temperature. A dielectric liquid flows over the outer surface of the chip and around the fins, with a temperature of T»,f= 20 °C and a convection coefficient of hf = 1150 W/m²-K. The chip is joined to…
1. An infinite parallel-sided slab of non-dimensional thickness L 1, has an initial (at non- dimensional time t= 0) temperature distribution To (x) given in below. Its left and right ends are subsequently (for t> 0) maintained at temperatures T1, and T2, respectively. The initial temperature distribution is given by T.(x) = 250*x*sin(rx) K, and the boundary temperatures for t> 0 are: T = 50K and T2 = 100K. Use 10 intervals in the x- direction, and At = 0.01. (a) Write the equations you'll be using to solve the problem in matrix form, using the implicit method. The coefficient matrix and the right-hand-side vector should show numerical values. Do not write every value, but use the matrix representation given in the presentation slides so you can fit the answer in the width of the page. Your equations should be for solution at time level (n=2), where n = Irepresents time t = 0.
Example 1.4 length. It is lined inside with 3 cm of insulating material of k = 0.042 W/mK. It is flying at a height where the average outside temperature is - 30°C. To find: The rate of heating required to maintain the compartment at 20°C for passenger comfort. Given: A jet aircraft compartment is assumed to be a cylindrical tube of 3-m diameter and 20-m

Chapter 4 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license