Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.60P
To determine
The heat transfer rate per unit length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Air flows at 120 o C in a thin-walled tube (k = 18 W/m o C) with h = 65 w/m 2 - o C. The inside diameter of the tube is 2.5 cm tand the thickness is 0.4 mm. The tube is exposed to an environment with h = 6.5 W/m 2 - o C and temperature of 15 o C. Calculate the the heat loss for 1 m length. What thickness of insulation having k = 40 W/m- 0 C should be added to reduce heat loss by 90 %.
A composite cylindrical wall is composed of two materials of thermal conductivity kA, andkB, which are separated by a very thin, electric resistance heater for which interfacialcontact resistances are negligible. Liquid pumped through the tube is at a temperature Too,iand provides a convection coefficient h; at the inner surface of the composite. The outersurface is exposed to ambient air, which is at Too,o and provides a convection coefficient ofho. Under steady-state conditions, a uniform heat flux of q"h is dissipated by the heater,where the reference area for this heat flux is the heater surface area. Any radiation effectscan be neglected.
Sketch the equivalent thermal circuit for this system then use your circuit to develop anexpression for q''h in terms of other important variables/parameters of the system. .
In the final stages of production, a pharmaceuticalis sterilized by heating it from 30°C to 75°C as it moves at0.2 m/s through a straight thin-walled stainless steeltube of 12.7-mm diameter. A uniform heat flux is maintained by an electric resistance heater wrappedaround the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluidenters the tube with a fully developed velocity profile and a uniform temperature profile, what is thesurface temperature at the tube exit? Fluid properties may be approximated as ? = 1000 kg/m3, cp =4000 J/kg K, ? = 2 x 10-3 kg/s m, k = 0.8 W/m K, and Pr = 10.
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Can someone please help me with creating an excel spreadsheet to calculate heat transfer phenomenon from a cylindrical fuel rod to the coolant? The excel sheet needs to be able to calculate these 3 things: Heat generated in a fuel rod at a distance ‘r’ from the center; Total Heat generated in the Reactor; the maximum temperature in the fuel and the cladding surface temperature, for a fuel rod at a distance ‘r’ from the center. The fuel used in this will be UO2 and there is a thin layer of helium that will separate the fuel from the cladding material. The user input parameters will be: the thermal neutron flux at the core, thermal conductivity of fuel, thermal conductivity of helium, thermal conductivity of the cladding, thickness of the helium layer, thickness of the cladding, diameter of the fuel pellet, fuel rod location (r), Cylindrical Reactor Size, and the fuel enrichment. For the fluid the user input will be coolant temperature and the heat transfer coefficient.arrow_forwardProvide two sample question regarding Heat transfer between two fluids separated by walls of a composite tube of solid materialsarrow_forwardProblem 6. ART TAT Consider the cylindrical pipe shown in the figure. Heat is being generated in the pipe wall at a rate of R in units of W/m³, and the thermal conductivity of the wall is k, the heat transfer coefficients at the inside and outside of the pipe are h; and ho, respectively. At a given location along the pipe axis, the temperature of the fluid flowing inside of the pipe is Ti and that at the outside is To i. ii. Find the expression for the temperature distribution in the pipe wall. Find the total heat transfer rate from the pipe to both fluids.arrow_forward
- Task 3 Air at atmospheric pressure and a mean temperature of 327ºC flows through a steel pipe of internal diameter 100 mm and external diameter 120 mm as shown in figure 1. The ambient temperature is 20ºC. (a) Determine the rate of heat loss per meter length of pipe. (i) when uninsulated. (ii) when insulated with 50mm of insulator. (b) Calculate the surface temperature of the insulation. Thermal conductivity of steel ks = 45 W/(mK) Thermal conductivity of insulation k= 1.15 W/(m K) Inner convective heat transfer coefficient for steel h₁ = 14.27 W/(m²K) Outer convective heat transfer coefficient for steel hos= 15 W/(m²K) Outer convective heat transfer coefficient for insulation hoi = 9 W/(m² k) hoi ki 13 r₁-50mm 0₁=327°C ₂-60mm h₁ Mos OR=20°C figure 1 - Pipe & Insulation sectionarrow_forwardA brass plate has a circular hole whose diameter is slightly smaller than the diameter of an aluminum ball. Ifthe ball and the plate are always kept at the same temperature,(a) should the temperature of the system be increased or decreasedin order for the ball to fit through the hole? (b) Choose the bestexplanation from among the following:I. The aluminum ball changes its diameter more with temperature than the brass plate, and therefore the temperatureshould be decreased.II. Changing the temperature won’t change the fact that the ballis larger than the hole.III. Heating the brass plate makes its hole larger, and that willallow the ball to pass through.arrow_forward2. Heat transfer coefficients can be difficult to measure, particularly for situations involving fast-moving fluids. In some cases however, the magnitude of the heat transfer coefficients can be estimated to a sufficient degree to enable further analysis of the larger problem. In a situation such as that described in the preceding paragraph, heat transfer occurs through the planar wall shown in the figure below. Two thermal situations are to be considered. In case I, the temperature of the fluid to the left of the wall is 130.5 °F and the fluid on the right is at 71.3 °F. Both sides of the planar wall are washed by fast- moving water. The exact values of the convective heat transfer coefficients are unknown. The heat flux through the wall is measured to be 42.6 Btu/hr-ft². 2 inches Tfl h₁ T₁ T₂ T₁² 11₂arrow_forward
- 1 example each Conductive heat flow through thick walled tube. CONDUCTED HEAT FLOW THROUGH THICK SPHEREarrow_forwardAn overhead 65-m-long, uninsulated industrial steam pipe of 80 mm diameter is routed through a building whose walls and air are at 30 °C. Pressurized steam maintains a pipe surface temperature of 200 "C, and the coefficient associated with natural convection is h = 15 W/m'K. The surface emissivity is e= steam line? 0.6. What is the rate of heat loss from thearrow_forwardCalculate the natural convection heat transfer coefficient for a vertical stainless pipe, 100 mm outside diameter, 0.75 m long. The pipe surface temperature is 125 ° C, and the air temperature is 30 ° C. Convection coefficient = Answer W / m² ° C.arrow_forward
- Problem 1 A hot water pipe is used for domestic applications is insulated with a layer of calcium silicate. If the insulation is 25 mm thick and its inner and outer surfaces are maintained at Ts,1 = 800 K and Ts,2 = 400 K, respectively. The outside diameter is 0.12 m. Given the thermal conductivity calcium silicate insulation equals to 0.09 W/m.K. A. Define the difference between lagged and unlagged pipes. B. Calculate the heat loss per unit length for this pipe.arrow_forwardAs part of your work-study program at HTU, you successfully got a student job at your local ‘BEST-BURGER-IN-TOWN’ to help pay your own tuition and expenses. Since cylindrical frozen burger patties are cooked when placed on a hot stainless-steel cooking top, you like to think of the case as a conduction problem:a. Write down the appropriate general heat conduction equation that describes the cooking of those beef patties.b. Clearly state all assumptions.c. After cancelling the proper terms, write down the final energy equation for the patties.Do not solve for temperature distribution or heat transfer.arrow_forwardFig. 4 illustrates an insulating wall of three homogeneous layers with conductivities k1, k2, and k3 in intimate contact. Under steady state conditions, both right and left surfaces are exposed to a temperature in a steady state condition at ambient temperatures of T and T , respectively, while ß, and BLare the film coefficients respectively. Assume that there is no internal heat generation and that the heat flow is one-dimensional (dT/dy = 0). For the illustrated ambient temperature in Fig. 4, determine the temperature's distribution at each layer. Material 3 Material 1 Material 2 T= 100 T= 35 °C Kı=20 K3=50 (W/m.k) K3=30 (W/m.k) B1= 10 w/m² °K (W/m.k) BR= 15 w/m²°K 50 mm 35 mm 25 cm Fig. 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license