Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.37P
To determine
Maximum allowable chip heat rate
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It is observed that the temperature distribution, in steady-state, inside a one-dimensional wall with thermal conductivity equal to 50 W/mK and thickness of 50 mm has the form T(°C) = a + bx², where a = 200 °C and b = -2000 °C/m², and x is in meters. (a) What is the heat generation rate (q’’’) in the wall? (b) Determine the heat fluxes on both faces of the wall.
Pls handwrite
A spherical metal ball of radius r0 (r initial) is
completely heated in a furnace to the temperature
Ti and then it is then removed from the furnace
and allowed to be cooled by convection and
radiation in the environment at temperature
To.The emissivity of the outer surface of the
sphere ɛ and the temperature of the surrounding
surfaces are T.environment. Average heat The
transfer coefficient is assumed to be h. Thermal
conductivity variable and heat transfer over time
The heat conduction equation of this problem, by
assuming that
Write the initial and boundary conditions.
(Do not solve the problem.)
Chapter 4 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate of...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Using the thermal resistance relations developed...Ch. 4 - Free convection heat transfer is sometimes...Ch. 4 - Consider Problem 4.5 for the case where the plate...Ch. 4 - Prob. 4.9PCh. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward5.10 Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder , the diameter, the thermal conductivity, and the rate of heat generation. Take the temperature at the surface as your datum. What is the equation for the center temperature if the difference between center and surface temperature is when the heat generation is ?arrow_forward1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward
- I need step by step and detailed explanations please help for understand, thank u :)arrow_forwardA plate-shaped glass wall with a thickness of 3 cm and a heat transfer coefficient of 2W / m.K has 30C air on the inside and 10C ambient air on the outside. The internal and external convulsion coefficients are 30 W / m ^ 2.K and Since it is 15W / m ^ 2.K,a.) The amount of heat in the unit area of the wall,b.) Calculate the inner and outer surface temperatures of the wall.arrow_forward(50 marks) Q: A hot surface at 125°C is to be cooled by attaching 4 cm long, 0.2 cm diameter aluminum pin fins (k =237 Wim. °C) to it, with a center-to- center distance of 0.5 cm. The temperature of the surrounding medium is 25 °C, and the heat transfer coefficient on the surfaces is fos cm 25 W/m?. C. Determine the rate of heat transfer from the surface 0.2 for a Ix0.5 m section of the plate. Also, determine the overall effectiveness of the fins.arrow_forward
- Please I need solutions speed time pleasearrow_forwardConsider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forwardHow does equation (1) derived to equation (2) and (3)arrow_forward
- Q1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forwardA finned surface has been added to cool an electronic part. The surface temperature of the electronic part in contact with the fins is 60 ° C, the convection coefficient between the environment and the finned surface is 40 W / m? .K and the thermal conductivity coefficient for the fin material (aluminum) is 180 W / m.K. a. The amount of Heat (W) per unit time thrown into the environment in case the electronic part has wings or no blades, b. Find out wing effectiveness and efficiency?arrow_forward2. Consider the temperature distributions associated with a dx differential control volume within the one-dimensional plane walls shown below. dx dx (b) Tr,1) dx dx le) (d) (a) Steady-state conditions exist. Is thermal energy being generated within the differential control volume? If so, is the generation rate positive or negative? (b) Steady-state conditions exist as in part (a). Is the volumetric generation rate positive or negative within the differential control volume? (c) Steady-state conditions do not exist, and there is no volumetric thermal energy generation. Is the temperature of the material in the differential control volume increasing or decreasing with time? (d) Transient conditions exist as in part (c). Is the temperature increasing or decreasing with time?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license