Precalculus
Precalculus
9th Edition
ISBN: 9780321716835
Author: Michael Sullivan
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.4, Problem 6AYU

(a)

To determine

To express: the revenue R as a function of x .

(a)

Expert Solution
Check Mark

Answer to Problem 6AYU

The expression of the revenue R is R(x)=120x2+25x

Explanation of Solution

Given:

  x=20p+500       0<p25

Explanations:

Here it is given that price p (in dollars) and the quantity x sold of a certain product obey the demand equation x=20p+500

Solve it for p .

  x500=20p+500500x500=20p

Divide both sides by 20 .

  x50020=20p20p=120x+25

Now as it is given that Revenue R is the product of price p and quantity x .

So

  R(x)=x×p=x×[(120)x+25]R(x)=120x2+25x

This is the model that express the Revenue R as a function of x .

Conclusion:

Hence, the expression of the revenue R is R(x)=120x2+25x

(b)

To determine

To find: the revenue if20units are sold

(b)

Expert Solution
Check Mark

Answer to Problem 6AYU

So, the required total revenue is $480 .

Explanation of Solution

Given:

  x=20p+500       0<p25

Explanations:

When the quantity sold x=20 ,

Total Revenue is,

  R(20)=(20)2+20×25=40020+500=20+500R(20)=480

So, the required total revenue is $480 .

Conclusion:

So, the required total revenue is $480 .

(c)

To determine

To find: the maximum revenue and the quantity x that maximizes the revenue

(c)

Expert Solution
Check Mark

Answer to Problem 6AYU

Maximum revenue is $3125

Total 250 units maximize revenue.

Explanation of Solution

Given:

  x=20p+500       0<p25

Explanations:

As the square term in the given function is negative that shows that its graph opens down or it has a maximum value at its vertex only. Now for the quadratic function f(x)=ax2+bx+c .

As x coordinate of vertex =b2a

As in given function of Revenue, a=120 and b=25

So x coordinate of vertex

  =252×120=25×202=250

  R(x)=15x2+20x

That shows that x=250 or total 250 units maximize revenue.

Now the value of R(x) at x=250 would be the maximum revenue now that is attainable at vertex only, so on plug in x=250 in given revenue function.

  R(250)=120×(250)2+25×250=625005+6250=3125+6250R(250)=3125

Or

Maximum revenue is $3125 that is obtained when maximum 250 units of product are sold.

Conclusion:

Hence, Maximum revenue is $3125

Total 250 units maximize revenue.

(d)

To determine

To find: price charged by the company to maximize revenue

(d)

Expert Solution
Check Mark

Answer to Problem 6AYU

Hence, maximum revenue is achieved when each item is sold at the rate of $12.5 per unit.

Explanation of Solution

Given:

Maximizing Revenue The price p (in dollars) and the quantity x sold of a certain product obey the demand equation

  x=20p+500       0<p25

Explanations:

As given that R=3125 and x=250

Now as formula for calculating revenue is R=xp

  3125=250×p

Now divide both sides by 250 ,

  250×p250=3125250p=12.5

Or, maximum revenue is achieved when each item is sold at the rate of $12.5 per unit.

Conclusion:

Hence, maximum revenue is achieved when each item is sold at the rate of $12.5 per unit.

(e)

To determine

To find: price charged by the company to earn at least $3000

(e)

Expert Solution
Check Mark

Answer to Problem 6AYU

The company should charge between $10 and $15 to earn at least $3000 in revenue

Explanation of Solution

Given:

  x=20p+500       0<p25

Explanations:

Now again as Revenue=Price×total item sold

  R=xp=(20p+500)×p=20×p×p+500×p=20p2+500p

Now for revenue to be at least $480 or for R3000

  i.e.20p2+500p3000or,20(p225p)3000

Now divide both sides by 20 .

  20(p225p)20300020p225p150p225p+1500(p15)(p10)0Eitherp150p15p100p10

So p10

Further as price is always positive so p>0

So, the domain of R={p|0<p10}

Conclusion:

Therefore, the company should charge between $10 and $15 to earn at least $3000 in revenue

Chapter 3 Solutions

Precalculus

Ch. 3.1 - Prob. 11AYUCh. 3.1 - Prob. 12AYUCh. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 13-20, a linear function is given. a....Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - In Problems 21-28, determine whether the given...Ch. 3.1 - Suppose that f( x )=4x1 and g(x)=2x+5 . a. Solve...Ch. 3.1 - Suppose that f( x )=3x+5 and g(x)=2x+15 . a. Solve...Ch. 3.1 - In parts (a) - (f), use the following figure. a....Ch. 3.1 - In parts (a) - (f), use the following figure. a....Ch. 3.1 - In parts (a) and (b), use the following figure. a....Ch. 3.1 - In parts (a) and (b), use the following figure. a....Ch. 3.1 - In parts (a) and (b), use the following figure. a....Ch. 3.1 - In parts (a) and (b), use the following figure. a....Ch. 3.1 - Prob. 37AYUCh. 3.1 - Prob. 38AYUCh. 3.1 - Prob. 39AYUCh. 3.1 - Prob. 40AYUCh. 3.1 - Prob. 41AYUCh. 3.1 - Prob. 42AYUCh. 3.1 - Prob. 43AYUCh. 3.1 - Prob. 44AYUCh. 3.1 - Prob. 45AYUCh. 3.1 - Prob. 46AYUCh. 3.1 - Prob. 47AYUCh. 3.1 - Prob. 48AYUCh. 3.1 - Prob. 49AYUCh. 3.1 - Prob. 50AYUCh. 3.1 - Prob. 51AYUCh. 3.1 - Prob. 52AYUCh. 3.1 - Which of the following functions might have the...Ch. 3.1 - Which of the following functions might have the...Ch. 3.1 - Under what circumstances is a linear function f( x...Ch. 3.1 - Explain how the graph of f( x )=mx+b can be used...Ch. 3.2 - Plot the points ( 1,5 ),( 2,6 ),( 3,9 ),( 1,12 )...Ch. 3.2 - Find an equation of the line containing the points...Ch. 3.2 - A _____________ is used to help us to see what...Ch. 3.2 - True or False The correlation coefficient is a...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 5-10, examine the scatter diagram and...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - In Problems 11-16, (a) Draw a scatter diagram. (b)...Ch. 3.2 - Candy The following data represent the weight (in...Ch. 3.2 - Tornadoes The following data represent the width...Ch. 3.2 - Video Games and Grade-Point Average Professor...Ch. 3.2 - Prob. 20AYUCh. 3.2 - Prob. 21AYUCh. 3.2 - Prob. 22AYUCh. 3.2 - Prob. 23AYUCh. 3.2 - Prob. 24AYUCh. 3.2 - Prob. 25AYUCh. 3.2 - Prob. 26AYUCh. 3.2 - Prob. 27AYUCh. 3.3 - List the intercepts of the equation y= x 2 9 ....Ch. 3.3 - Prob. 2AYUCh. 3.3 - To complete the square of x 2 5x , you add the...Ch. 3.3 - To graph y= (x4) 2 you shift the graph of y= x 2...Ch. 3.3 - The graph of a quadratic function is called a(n)...Ch. 3.3 - The vertical line passing through the vertex of a...Ch. 3.3 - The x-coordinate of the vertex of f( x )=a x 2...Ch. 3.3 - True or False The graph of f( x )=2 x 2 +3x4 opens...Ch. 3.3 - True or False The y-coordinate of the vertex of f(...Ch. 3.3 - True or False If the discriminant b 2 4ac=0 , the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 13-20, match each graph to one the...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 21-32, graph the function f by...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 33-48, (a) graph each quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 49-54, determine the quadratic...Ch. 3.3 - In Problems 6572, determine, without graphing,...Ch. 3.3 - In Problems 55-62, determine, without graphing,...Ch. 3.3 - In Problems 55-62, determine, without graphing,...Ch. 3.3 - In Problems 55-62, determine, without graphing,...Ch. 3.3 - In Problems, determine, without graphing, whether...Ch. 3.3 - In Problems 55-62, determine, without graphing,...Ch. 3.3 - In Problems, determine, without graphing, whether...Ch. 3.3 - In Problems 55-62, determine, without graphing,...Ch. 3.3 - The graph of the function f( x )=a x 2 +bx+c has...Ch. 3.3 - The graph of the function f(x)=a x 2 +bx+c has...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - In Problems 77-82, for the given functions fandg ,...Ch. 3.3 - Answer Problems 83 and 84 using the following: A...Ch. 3.3 - Answer Problems 83 and 84 using the following: A...Ch. 3.3 - Suppose that f(x)= x 2 +4x21 . (a) What is the...Ch. 3.3 - Suppose that f( x )= x 2 +2x8 . (a) What is the...Ch. 3.3 - Analyzing the Motion of a Projectile A projectile...Ch. 3.3 - Analyzing the Motion of a Projectile A projectile...Ch. 3.3 - Maximizing Revenue Suppose that the manufacturer...Ch. 3.3 - Maximizing Revenue A lawn mower manufacturer has...Ch. 3.3 - Minimizing Marginal Cost The marginal cost of a...Ch. 3.3 - Minimizing Marginal Cost (See Problem 91.) The...Ch. 3.3 - Business The monthly revenue R achieved by selling...Ch. 3.3 - Business The daily revenue R achieved by selling x...Ch. 3.3 - Stopping Distance An accepted relationship between...Ch. 3.3 - Prob. 82AYUCh. 3.3 - Prob. 83AYUCh. 3.3 - Prob. 84AYUCh. 3.3 - Prob. 85AYUCh. 3.3 - Prob. 86AYUCh. 3.3 - Prob. 87AYUCh. 3.3 - Prob. 88AYUCh. 3.3 - Prob. 89AYUCh. 3.3 - Prob. 90AYUCh. 3.3 - Prob. 91AYUCh. 3.3 - Prob. 92AYUCh. 3.4 - Prob. 1AYUCh. 3.4 - Prob. 2AYUCh. 3.4 - Prob. 3AYUCh. 3.4 - Prob. 4AYUCh. 3.4 - Prob. 5AYUCh. 3.4 - Prob. 6AYUCh. 3.4 - Prob. 7AYUCh. 3.4 - Prob. 8AYUCh. 3.4 - Prob. 9AYUCh. 3.4 - Prob. 10AYUCh. 3.4 - Prob. 11AYUCh. 3.4 - Prob. 12AYUCh. 3.4 - Prob. 13AYUCh. 3.4 - Prob. 14AYUCh. 3.4 - Prob. 15AYUCh. 3.4 - Prob. 16AYUCh. 3.4 - Prob. 17AYUCh. 3.4 - Prob. 18AYUCh. 3.4 - Prob. 19AYUCh. 3.4 - Prob. 20AYUCh. 3.4 - Prob. 21AYUCh. 3.4 - Prob. 22AYUCh. 3.4 - Prob. 23AYUCh. 3.4 - Prob. 24AYUCh. 3.4 - Prob. 25AYUCh. 3.4 - Prob. 26AYUCh. 3.4 - Prob. 27AYUCh. 3.4 - Prob. 28AYUCh. 3.4 - Prob. 29AYUCh. 3.4 - Prob. 30AYUCh. 3.4 - Prob. 31AYUCh. 3.5 - Solve the inequality 3x27 .Ch. 3.5 - Write (2,7] using inequality notation.Ch. 3.5 - (a) f( x )0 (b) f( x )0Ch. 3.5 - (a) g( x )0 (b) g( x )0Ch. 3.5 - (a) g( x )f( x ) (b) f( x )g( x )Ch. 3.5 - (a) f( x )g( x ) (b) f( x )g( x )Ch. 3.5 - x 2 3x100Ch. 3.5 - x 2 +3x100Ch. 3.5 - x 2 4x0Ch. 3.5 - x 2 +8x0Ch. 3.5 - x 2 90Ch. 3.5 - x 2 10Ch. 3.5 - x 2 +x12Ch. 3.5 - x 2 +7x12Ch. 3.5 - 2 x 2 5x+3Ch. 3.5 - 6 x 2 6+5xCh. 3.5 - x 2 x+10Ch. 3.5 - x 2 +2x+40Ch. 3.5 - 4 x 2 +96xCh. 3.5 - 25 x 2 +1640xCh. 3.5 - 6( x 2 1 )5xCh. 3.5 - 2( 2 x 2 3x )9Ch. 3.5 - Prob. 23AYUCh. 3.5 - Prob. 24AYUCh. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - In Problems 25-32, use the given functions f and g...Ch. 3.5 - Prob. 33AYUCh. 3.5 - Prob. 34AYUCh. 3.5 - Prob. 35AYUCh. 3.5 - Prob. 36AYUCh. 3.5 - Prob. 37AYUCh. 3.5 - Prob. 38AYUCh. 3.5 - Prob. 39AYUCh. 3.5 - Prob. 40AYUCh. 3.5 - Prob. 41AYUCh. 3.5 - Prob. 42AYUCh. 3.5 - Prob. 43AYUCh. 3 - Prob. 1RECh. 3 - Prob. 2RECh. 3 - Prob. 3RECh. 3 - Prob. 4RECh. 3 - Prob. 5RECh. 3 - Prob. 6RECh. 3 - Prob. 7RECh. 3 - Prob. 8RECh. 3 - Prob. 9RECh. 3 - Prob. 10RECh. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - Prob. 17RECh. 3 - Prob. 18RECh. 3 - Prob. 19RECh. 3 - Prob. 20RECh. 3 - Prob. 21RECh. 3 - Prob. 22RECh. 3 - Prob. 23RECh. 3 - Prob. 24RECh. 3 - Prob. 25RECh. 3 - Prob. 26RECh. 3 - Prob. 27RECh. 3 - Prob. 28RECh. 3 - Prob. 29RECh. 3 - Prob. 30RECh. 3 - Prob. 31RECh. 3 - Prob. 32RECh. 3 - Prob. 33RECh. 3 - Prob. 34RECh. 3 - Prob. 35RECh. 3 - Prob. 36RECh. 3 - Prob. 37RECh. 3 - Prob. 38RECh. 3 - Prob. 39RECh. 3 - Prob. 40RECh. 3 - Prob. 41RECh. 3 - Prob. 42RECh. 3 - Prob. 43RECh. 3 - Prob. 44RECh. 3 - Prob. 45RECh. 3 - Prob. 46RECh. 3 - Prob. 47RECh. 3 - Prob. 1CTCh. 3 - Prob. 2CTCh. 3 - Prob. 3CTCh. 3 - Prob. 5CTCh. 3 - Prob. 4CTCh. 3 - Prob. 6CTCh. 3 - Prob. 7CTCh. 3 - Prob. 8CTCh. 3 - Prob. 9CTCh. 3 - Find the distance between the points P=( 1,3 ) and...Ch. 3 - Prob. 2CRCh. 3 - Solve the inequality 5x+30 and graph the solution...Ch. 3 - Find the equation of the line containing the...Ch. 3 - Find the equation of the line perpendicular to the...Ch. 3 - Graph the equation x 2 + y 2 4x+8y5=0 .Ch. 3 - Does the following relation represent a function?...Ch. 3 - For the function f defined by f( x )= x 2 4x+1 ,...Ch. 3 - Find the domain of h(z)= 3z1 6z7 .Ch. 3 - Is the following graph the graph of a function?Ch. 3 - Consider the function f(x)= x x+4 . a. Is the...Ch. 3 - Is the function f(x)= x 2 2x+1 even, odd, or...Ch. 3 - Approximate the local maximum values and local...Ch. 3 - If f(x)=3x+5 and g(x)=2x+1 , a. Solve f(x)=g( x )...Ch. 3 - For the graph of the function f , a. Find the...

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY