In Problems 49-54, determine the quadratic function whose graph is given.
To calculate: The quadratic function using the given graphs.
Answer to Problem 51AYU
The equation of the given graph is .
Explanation of Solution
Given:
The given graph is
Formula Used:
The general form of a quadratic equation is .
This general equation can also be written as , where
If , the graph opens upwards.
If , the graph opens downwards.
The vertex of the above function is .
The axis of symmetry will be .
We can find the by equating the equation at .
We can find the by equation the equation at .
1. If then the vertex is the .
2. If then the graph has no .
3. If then the vertex is the .
Calculation:
Let us consider the quadratic equation of the given graph to be
-----(1)
From the given graph, we can see that the of the given function is .
We know that the is the value of the function at , thus, we have
-----(2)
At , (1) becomes
-----(3)
Thus, using (2) and (3), we get the value of .
Thus, equation (1) becomes
-----(4)
Now, we need to find and .
We know that a point in a graph is written as .
The given graph has 2 points and .
Consider the point .
Here, we have and .
Therefore, substituting it in (4), we get
-----(5)
Now, consider the point .
Here, we have and .
Therefore, substituting it in (4), we get
-----(6)
In order to find the values of and , we have to solve the equations (5) and (6).
Therefore, we have
-----(5) And
-----(6).
Now, on adding (5) and (6), we get
On substituting the above value in (5), we get
Therefore, the equation of the given graph is
Chapter 3 Solutions
Precalculus
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Introductory Statistics
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- The OU process studied in the previous problem is a common model for interest rates. Another common model is the CIR model, which solves the SDE: dX₁ = (a = X₁) dt + σ √X+dWt, - under the condition Xoxo. We cannot solve this SDE explicitly. = (a) Use the Brownian trajectory simulated in part (a) of Problem 1, and the Euler scheme to simulate a trajectory of the CIR process. On a graph, represent both the trajectory of the OU process and the trajectory of the CIR process for the same Brownian path. (b) Repeat the simulation of the CIR process above M times (M large), for a large value of T, and use the result to estimate the long-term expectation and variance of the CIR process. How do they compare to the ones of the OU process? Numerical application: T = 10, N = 500, a = 0.04, x0 = 0.05, σ = 0.01, M = 1000. 1 (c) If you use larger values than above for the parameters, such as the ones in Problem 1, you may encounter errors when implementing the Euler scheme for CIR. Explain why.arrow_forward#8 (a) Find the equation of the tangent line to y = √x+3 at x=6 (b) Find the differential dy at y = √x +3 and evaluate it for x=6 and dx = 0.3arrow_forwardQ.2 Q.4 Determine ffx dA where R is upper half of the circle shown below. x²+y2=1 (1,0)arrow_forward
- the second is the Problem 1 solution.arrow_forwardc) Sketch the grap 109. Hearing Impairments. The following function approximates the number N, in millions, of hearing-impaired Americans as a function of age x: N(x) = -0.00006x³ + 0.006x2 -0.1x+1.9. a) Find the relative maximum and minimum of this function. b) Find the point of inflection of this function. Sketch the graph of N(x) for 0 ≤ x ≤ 80.arrow_forwardThe purpose of this problem is to solve the following PDE using a numerical simulation. { af (t, x) + (1 − x)= - Ət af 10²ƒ + მე 2 მე2 = 0 f(ln(2), x) = ex (a) The equation above corresponds to a Feynman-Kac formula. Identify the stochastic process (X)20 and the expectation that would correspond to f(t, x) explicitly. (b) Use a numerical simulation of (X+) above to approximate the values of f(0, x) at 20 discrete points for x, uniformly spaced in the interval [0,2]. Submit a graph of your solution. (c) How would you proceed to estimate the function f(0.1, x). (Briefly explain your method, you do not need to do it.) Extra question: You can explicitly determine the function in (b) (either as a conditional expectation or by solving the PDE). Compare the theoretical answer to your solution.arrow_forward
- A sequence is given by the formula an = n/2n^2 +1 . Show the sequence is monotone decreasing for n >1. (Hint: What tool do you know for showing a function is decreasing?)arrow_forwardA sequence is given by the formula an = n 2n2 +1 . Show the sequence is monotone decreasing for n 1. (Hint: What tool do you know for showing a function is decreasing?)arrow_forwardDifferentiate #32, #35arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning