
Concept explainers
Answer Problems 83 and 84 using the following: A quadratic function of the form with may also be written in the form , where are the of the graph of the quadratic function.
(a) Find a quadratic function whose are and 1 with .
(b) How does the value of affect the intercepts?
(c) How does the value of affect the axis of symmetry?
(d) How does the value of affect the vertex?
(e) Compare the of the vertex with the midpoint of the . What might you conclude?

a. The quadratic function whose is given.
b. How does the value affect the intercepts?
c. How does the value of affect the axis of symmetry?
d. How does the value of affect the vertex?
e. Compare the of the vertex with the midpoint of the . What might we conclude?
Answer to Problem 69AYU
a. When , we have
When , we have
When , we have
When , we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing a times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Explanation of Solution
Given:
The of the function are and 1.
Formula used:
A quadratic equation of the form can also be written as where and is the of the graph of the quadratic function.
Axis of symmetry is
Vertex is at
The is found by solving the equation at .
Calculation:
a. The given quadratic function is
Case 1:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 2:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 3:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 4:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Chapter 3 Solutions
Precalculus
Additional Math Textbook Solutions
Introductory Statistics
College Algebra with Modeling & Visualization (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics
Calculus: Early Transcendentals (2nd Edition)
- 8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.arrow_forwardPLEASE SHOW ME THE RIGHT ANSWER/SOLUTION SHOW ME ALL THE NEDDED STEP 13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.arrow_forwardDO NOT GIVE THE WRONG ANSWER SHOW ME ALL THE NEEDED STEPS 11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?arrow_forward
- please answer by showing all the dfalowing necessary step DO NOT GIVE ME THE WRONG ANSWER The sides of a cube of ice are melting at a rate of 1 inch per hour. When its volume is 64 cubic inches, at what rate is its volume changing?arrow_forwardSox & Sin (px) dx 0arrow_forward8 L 8 e ipx dxarrow_forward
- Find the Taylor polynomial T³(×) for the function f centered at the number a. f(x) = xe-2x a = 0 T3(x) =arrow_forwardFor each graph in Figure 16, determine whether f (1) is larger or smaller than the slope of the secant line between x = 1 and x = 1 + h for h > 0. Explain your reasoningarrow_forwardPoints z1 and z2 are shown on the graph.z1 is at (4 real,6 imaginary), z2 is at (-5 real, 2 imaginary)Part A: Identify the points in standard form and find the distance between them.Part B: Give the complex conjugate of z2 and explain how to find it geometrically.Part C: Find z2 − z1 geometrically and explain your steps.arrow_forward
- A polar curve is represented by the equation r1 = 7 + 4cos θ.Part A: What type of limaçon is this curve? Justify your answer using the constants in the equation.Part B: Is the curve symmetrical to the polar axis or the line θ = pi/2 Justify your answer algebraically.Part C: What are the two main differences between the graphs of r1 = 7 + 4cos θ and r2 = 4 + 4cos θ?arrow_forwardA curve, described by x2 + y2 + 8x = 0, has a point A at (−4, 4) on the curve.Part A: What are the polar coordinates of A? Give an exact answer.Part B: What is the polar form of the equation? What type of polar curve is this?Part C: What is the directed distance when Ø = 5pi/6 Give an exact answer.arrow_forwardNew folder 10. Find the area enclosed by the loop of the curve (1- t², t-t³)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





