Concept explainers
Answer Problems 83 and 84 using the following: A quadratic function of the form with may also be written in the form , where are the of the graph of the quadratic function.
(a) Find a quadratic function whose are and 3 with .
(b) How does the value of affect the intercepts?
(c) How does the value of affect the axis of symmetry?
(d) How does the value of affect the vertex?
(e) Compare the of the vertex with the midpoint of the . What might you conclude?
a. The quadratic function whose is given.
b. How does the value affect the intercepts?
c. How does the value of affect the axis of symmetry?
d. How does the value of affect the vertex?
e. Compare the of the vertex with the midpoint of the . What might we conclude?
Answer to Problem 70AYU
a.
When , we have
When , we have
When , we have
When , we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Explanation of Solution
Given:
The of the function are and 3.
Formula used:
A quadratic equation of the form can also be written as where and is the of the graph of the quadratic function.
Axis of symmetry is
Vertex is at
The is found by solving the equation at .
Calculation:
a. The given quadratic function is
Case 1:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 2:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 3:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 4:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Chapter 3 Solutions
Precalculus
Additional Math Textbook Solutions
Introductory Statistics
Basic Business Statistics, Student Value Edition
Algebra and Trigonometry (6th Edition)
Elementary Statistics
Pre-Algebra Student Edition
Elementary Statistics (13th Edition)
- 2. Graph the function f(x)=e* −1. Label three points on the graph (one should be the intercept) with corresponding ordered pairs (round to one decimal place) and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features. You may show the final graph only.arrow_forwardansewer both questions in a very detailed manner . thanks!arrow_forwardQuestion Considering the definition of f(x) below, find lim f(x). Select the correct answer below: -56 -44 ○ -35 ○ The limit does not exist. x+6 -2x² + 3x 2 if x-4 f(x) = -x2 -x-2 if -4x6 -x²+1 if x > 6arrow_forward
- Let g(x) = f(t) dt, where f is the function whose graph is shown. y 5 f 20 30 t (a) Evaluate g(x) for x = 0, 5, 10, 15, 20, 25, and 30. g(0) = g(5) = g(10) = g(15) =| g(20) = g(25) = g(30) = (b) Estimate g(35). (Use the midpoint to get the most precise estimate.) g(35) = (c) Where does g have a maximum and a minimum value? minimum x= maximum x=arrow_forwardQuestion Determine lim f(x) given the definition of f(x) below. (If the limit does not exist, enter DNE.) x+6+ -2x²+3x-2 f(x) -2x-1 if x-5 if -−5≤ x ≤ 6 3 if x 6arrow_forwardQuestion Given the following piecewise function, evaluate lim f(x). (If the limit does not exist, enter DNE.) x-3 Provide your answer below: x² + 3x 3 if x-3 f(x) -3 if -3x -2x²+2x-1 6 if x 6arrow_forward
- Question Given the following piecewise function, evaluate lim f(x). x→2 Select the correct answer below: -73 -24 -9 -12 The limit does not exist. 2x f(x) = -2x²-1 if -2x2 3x+2 if x 2arrow_forwardQuestion Given the following piecewise function, evaluate lim f(x). f(x) = x+1- -2x² - 2x 3x-2 2 x² +3 if x-2 if -2< x <1 if x 1 Select the correct answer below: ○ -4 ○ 1 ○ 4 The limit does not exist.arrow_forwardQuestion Given the following piecewise function, evaluate lim →1− f(x). Select the correct answer below: ○ 1 ○ 4 -4 The limit does not exist. -2x² - 2x x 1arrow_forward
- (4) (8 points) (a) (2 points) Write down a normal vector n for the plane P given by the equation x+2y+z+4=0. (b) (4 points) Find two vectors v, w in the plane P that are not parallel. (c) (2 points) Using your answers to part (b), write down a parametrization r: R² — R3 of the plane P.arrow_forward(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3 and 2x + z = 3. Then determine a parametrization of the intersection line of the two planes.arrow_forward(3) (6 points) (a) (4 points) Find all vectors u in the yz-plane that have magnitude [u also are at a 45° angle with the vector j = (0, 1,0). = 1 and (b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an equation of the plane through (0,0,0) that has u as its normal.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning