Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.69P
(a)
To determine
To plot: The temperature distribution.
(b)
To determine
To plot: The temperature distribution at increments of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. a. The heat flux applied to the walls of the biomass combustion furnace is 20 W/m2. The furnace walls have a thickness of 10 mm and a thermal conductivity of 12 W/m.K. If the wall surface temperature is measured to be 50oC on the left and 30oC on the right, prove that conduction heat transfer occurs at a steady state!b. Heating the iron cylinder on the bottom side is done by placing the iron on the hotplate. This iron has a length of 20 cm. The surface temperature of the hotplate is set at 300oC while the top side of the iron is in contact with the still outside air. To reach the desired hotplate temperature, it takes 5 minutes. Then it takes 15 minutes to measure the temperature of the upper side of the iron cylinder at 300oC. Show 3 proofs that heat transfer occurs transiently
B6
8--The reactor from uniform carbide and graphite as a cylinder rod with
diameter of 12 mm. The volumetric heat liberationis 3.88x108 W/m3
The thermal conductivity of the rod material is 85 W/mC.. Determine the
heat losses from the rod and the surface temperature if the maximum
temperature of the rod is 200C...Ans Tw=1940 C,,Heat losses=1.164
MW/m2.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forwardA 0.6-cm diameter mild steel rod at 38C is suddenly immersed in a liquid at 93C with hc=110W/m2K. Determine the time required for the rod to warm to 88C.arrow_forwardA chip that is of length L = 5.5 mm on a side and thickness t = 2.0 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m² K and To = 20°C. . Th Chip, q, T₁, P, Cp The time is Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg-K, respectively. The steady-state chip temperature Tf is i S. °C.arrow_forward
- Q2. Steam pumped through a long- insulated pipe at a temperature of T= 500 K and provides a convection coefficient of h, = 100 W/m?K at the inner surface of the pipe. The inner and outer radius of the pipe and insulation material are r1 = 10, r2 = 12 and r3 = 17 cm, respectively. The thermal conductivity of the pipe is 100 W/mK. The insulation material is glass fiber and its outer surface is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20 Internal flow Ambient air W/m?K, determine the followings: a. What are the thermal resistance coefficients for convections and conductions b. What is the heat transfer rate per unit length of the pipe c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe. t00 noints)arrow_forward2. A steel plate of k=50w/mk and thickness 10cm passes a heat flux by conduction of 25kW/m² . If the temperature of hot surface of plate is 100C, then what is the temperature of the cooler side of plate?arrow_forward3.156 Heat is uniformly generated at the rate of 2 × 10° W/m in a wall of thermal conductivity 25 W/m•K and thickness 60 mm. The wall is exposed to convec- tion on both sides, with different heat transfer coeffi- cients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown and thermal conductivity of 250 W/m•K. What is the maximum temperature that will occur in the wall? L;= 20 mm I t = 2 mm k = 25 W/m•K q = 2 x 105 W/m3 h = 50 W/m2•K h, = 12 W/m²•K T,1 = = 30°C 8 = 2 mm T 2 = 15°C 2L = 60 mm %3D kf = 250 W/m•Karrow_forward
- Problems within the wall is T(x) = a(L- ) +b where a = 10°C/m2 and b 30°C, what is the thermal con- ductivity of the wall? What is the value of the convec- tion heat transfer coefficient, h? 2.11 Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductiv- ity k 50 W/m K and a thickness L = 0.25 m, with no internal heat generation. 2. T2 T1 L Determine the heat flux and the unknown quantity for each case and sketch the temperature distribution, indi- cating the direction of the heat flux. 2 Case TC) dTldx (K/m) T2(°C) 1 50 -20 2 -30 - 10 3 70 160 4 40 -80 5 30 200arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forward1- A solid infinitely long cylinder, radius 2 cm, has uniform internal heat generation. The temperature distribution in the cylinder is T(r) = = 256 – 8.6 x 104 r² where r is in meters, T in °C and the thermal conductivity of the cylinder material is 16 W/ m °C. Determine: (a) The temperature at the centerline. (b) The surface temperature. (c) The heat flux at the surface. (d) The rate of heat transfer to the surrounding per unit meter of cylinder length.arrow_forward
- a. The wall of a building has a surface area of 50 m2. The outside layer of the wall is 20 cm thick concrete with thermal conductivity kcon = .8 W/m-K. The inner layer is 10 cm thick balsa wood (kbalsa = .048 W/m-K) as an insulator. Outside temperatures of 47o C are expected, while an inside temperature of 21o C is maintained by the cooling system. Find the rate of heat transfer through the wall.arrow_forwardI need the answer as soon as possiblearrow_forwardA copper bar (2.00 cm by 2.00 cm and 10.0 cm long) is welded end to end to a brass bar of the same dimensions. The free end of the copper bar is placed in a steam bath and the free end of the brass bar is placed in an ice bath. If the system is at steady state condition and that both bars are properly insulated. (Given the thermal conductivity of copper is 390 W m-1 °C-1 and he thermal conductivity for brass is 110 W 1°C1) a.) What is the temperature T at the interface of the copper-brass bar? b.) How much thermal energy flows through the bar per minute?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license