Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.56P
(a)
To determine
The spatially averaged value of the thermal conductivity.
The rate of heat transfer per unit length for case
The rate of heat transfer per unit length for case
(b)
To determine
The rate of heat transfer per unit length for case
The comparison between the values calculated in part (a).
(c)
To determine
The rate of heat transfer per unit depth for case
The comparison between the values calculated in part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The composite wall of an oven consists of three materials, two of which are ofknown thermal conductivity, kA = 25 W/m ⋅ K and kC = 60 W/m ⋅ K, and knownthickness, LA = 0.40 m and LC = 0.20 m. The third material, B, which is sandwichedbetween materials A and C, is of known thickness, LB = 0.20 m, but unknownthermal conductivity kB. Under steady-state operating conditions, measurementsreveal an outer surface temperature of Ts,o = 20°C, an inner surface temperature ofTs,i = 600°C, and an oven air temperature of T∞ = 800°C. The inside convection coefficient h is known to be 25 W/m2 ⋅K. Neglecting convection transfer effect,what is the value of kB?
Both ends of a 32 cm long rod are maintained a constant temperature of 100 °C. Dimensions and thermal parameters of the rod are as follows:
Diameter D = 2 cm
Convection coefficient h = 10 W/m2K
Ambient temperature T¥ = 20 °C
Thermal conductivity k = 10 W/mK
What is the midpoint temperature of the rod?
Solve using the methodology : Known, Find, Schematic Diagram, Assumptions, Properties, Analysis and Comments.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Insulating material is used to reduce heat loss from the heating furnace walls to the room. The surface temperature of the insulating material is 100 ° C and the other surfaces 20 ° C. Allowable heat loss up to 140 W / m2 from the wall. If the thermal conductivity of the insulation material is 0.05 W / (m ° C), calculate the required thickness of insulation. insulation thickness = Answer cmarrow_forwardFind the minimum amount of diameter for the insulation of a cylindrical electrical cable? Radius of the cable is 3 mm, length is 2 m, thermal conductivity is 20 W/(m^2*K) and convective coefficient is 5 WI(m*K) 12 mm 4 mm not sufficient information 3 mm 8 mmarrow_forward1. Temperatures are measured at the left-hand face and at a point 4 cm from the left-hand face of the planar wall shown in the figure below. These temperatures are T₁ = 45.3 °C and T* = 21.2 °C. The heat flow through the planar wall is steady and one dimensional. What is the value of T2 at the right-hand surface of the wall? TI T* 4 cm 10 cm T2arrow_forward
- A bar of thermal conductivity k = 140 W/m ⋅ K is of a trapezoidal cross section asshown in the schematic. The left and right faces are at temperatures Th = 100°Cand Tc = 0°C, respectively. Determine the heat transfer rate per unit bar lengthusing a finite difference approach with ∆X = ∆y = 10 mm. Compare the heat rate tothat of a bar of a 20 mm × 30 mm rectangular cross section where the height of thedomain is 20 mm.arrow_forwardLooking for a handwritten solution as fast as possible.arrow_forwardThree (3) bricks, specifically A, B, and C were arranged horizontally in such a way that it can be illustrated as a sandwich panel. Consider the system to be in series and in the order of Brick A, Brick B and Brick C. The outside surface temperature of Brick A is 1,500℃ and 150 ℃ for the outside surface of Brick C. The thermal conductivities for Brick A, Brick B and Brick C, are 2 ?/? °? , 0.50 ?/? °? , 60 ?/? °?. The thickness of Brick A and Brick C are 50 cm and 22 cm. The rate of heat transfer per unit area is 1,000 ?/?2 . Determine the following: The thickness of Brick B in the unit of mm. Assume that all the conditions were retain except that the thickness of Brick B was increased to 800 mm, what is the new value for the rate of heat transfer per unit area in ???/ℎ? . ??2 please explain the principles to solve thisarrow_forward
- A team of students tests a material for its thermal conductivity (k). After 20 minutes in a heat box, the temperature is 48° C inside the box and 28° C on top of the material. The following data is true about this test: Area of material = .0225 m2 Thickness of material = .0127 m Light bulb = 25 W What is the thermal conductivity constant for the material? Calculate the amount of energy transferred through the material. Determine the R-value of the material. Based on your calculations, would the material be a reasonable choice for home insulation? Yes of Noarrow_forwardA certain insulation has a thickness of 2 cm. What thermal conductivity in W/m • *C is necessary to effect a temperature drop of 500 *C for a heat flow of 400 W/m2?arrow_forwardquestion A B and Carrow_forward
- An electric furmace is a composite wall consisting of a brick with 0.2 m refractory brick (k=2), 0.15 m insulation (k =0.15) and 0.15 m (k= 1.5) references The internal and external temperatures of the wall are 1027 °C and 27 °C, respectively. k units are kcal-m/H m2 °C. If the surface area of the wall is 1.2 m2 calculate the heat transfer rate accordingly (kcal/h). Please select one: a.10000 b.1000 c.10 d.100 e. None of themarrow_forwardThe first part of the question has been worked on, where the heat transfer was calculated to be 6.770 kilowatt, but the problem also asks to calculate the temperature of the outer most surface. What is the temperature of the outer most surface?arrow_forwardDo fast i will give you good ratearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license