Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.30P
(a)
To determine
The measurement error for the thermocouple when the block is at
(b)
To determine
The graph of measurement error as a function of the thermal conductivity of block material over the range
The circumstances when it is advantageous to use smaller diameter wire.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
The interior of a refrigerator whose dimensions are 0.05 x 0.05 dam base area and 1.25 m high, must be kept at 4 °C. The refrigerator walls are constructed of two steel sheets (k= 35 kcal/h.m.°C) 3 mm thick, with 65 mm of material insulation (k=0.213 kcal/h.m.°C) between them. The film coefficient of the inner surface is 10 kcal/h.m².°C, while on the external surface it varies from 8 to 12.5 kcal/h.m².°C. Calculate: a) The power (in HP) of the refrigerator motor so that the heat flux removed from the inside the refrigerator maintain the specified temperature, in a kitchen whose temperature can vary from 21 to 36 °C; b) The temperatures of the inner and outer surfaces of the wall. Given 1 HP = 641.2 Kcal/h
1. Saturated steam at 500 K flows in a 0.20 m inside diameter, 0.21 m outside
diameter pipe. The pipe is covered with 0.075 m of insulation with a thermal
conductivity of 0.10 W/m-K. The pipe's conductivity is 52 W/m-K. The ambient
temperature is 300 K. The unit convective coefficients are hi = 18,000 W/m²-K and
ho 12 W/m²-K. Determine the heat loss (kJ/min) from 5 m of pipe.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.15 A thermocouple (0.8-mm-diameter wire) used to measure the temperature of the quiescent gas in a furnace gives a reading of . It is known, however, that the rate of radiant heat flow per meter length from the hotter furnace walls to the thermocouple wire is 1.1 W/m and the convection heat transfer coefficient between the wire and the gas is K. With this information, estimate the true gas temperature. State your assumptions and indicate the equations used.arrow_forward3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the atmosphere from outer space. If its original temperature is 38°C, the effective average temperature of the atmosphere is 1093°C, and the effective heat transfer coefficient is , estimate the temperature of the shell after reentry, assuming the time of reentry is 10 min and the interior of the shell is evacuated.arrow_forward19 mm diameter steel balls are quenched by heating to 989 K followed by slow cooling to 400 K in an environment with air at T∞ = 325 K and h = 39 W/m2.K. Assuming that the steel properties are k = 40 W/m.K, ρ = 7800 kg/m3 and C = 600 J/kg.K, estimate the time (in "minutes") required for the cooling process. Bolas de aço com 19 mm de diâmetro são temperadas pelo aquecimento a 989 K seguido pelo resfriamento lento até 400 K em um ambiente com ar a T∞ = 325 K e h = 39 W/m2.K. Admitindo que as propriedades do aço sejam k = 40 W/m.K, ρ = 7800 kg/m3 e C = 600 J/kg.K, estime o tempo (em "minutos") necessário para o processo de resfriamento.arrow_forward
- Demonstrate that the heat flowing from a simple pipe of length L, radii ro and ri, surface temp To and Ti and having a thermal conductivity k may be found by using the expression. Here Am is the logarithmic mean areaarrow_forwardA steel sphere (AISI 1010), 100 mm in diameter, is coated with a dielectric material layer of thickness 1.75 mm and thermal conductivity 0.04 W/m.K. The coated sphere is initially at a uniform temperature of 500°C and is suddenly quenched in a large oil bath for which T = 100°C and h = 3000 W/m².K. Estimate the time, in h, required for the coated sphere temperature to reach 150°C. Hint: Neglect the effect of energy storage in the dielectric material, since its thermal capacitance (pc)is small compared to that of the steel sphere. t = harrow_forwardA thermocouple is initially at temperature of T; and it is used to measure the temperature of air (Tair). It would take a while for the temperature of the thermocouple junction to approach Tair. The thermocouple junction can be approximated by a copper sphere of 0.5 mm in diameter. Using the lumped system analysis (chapter 5, undergraduate heat transfer textbook), derive an expression for T(t) (it should look like: (T(t)-Tair )/(Ti-Tair) = e, where T; is the initial temperature of the thermocouple, and Tair is the air temperature). Calculate the time constant 7 (assuming the convection heat transfer coefficient h=5 W/m²K). Use the thermal properties of copper from your undergraduate textbook or any other books. Usually t=3t is used as the response time of the thermocouple with 5% measuring error. Explain why? If the thermocouple size is increased to 5 mm in diameter, what is the response time?arrow_forward
- W m.K W m².K' W An insulation material of thermal conductivity k = 0.05; is sandwiched between thin metal sheets of negligible thickness. It is used as the material of the wall of a drying oven. The air inside the oven is 300°C with a convection heat transfer coefficient of 30 The inner wall surface is subjected to a constant radiant heat flux of 100 from hotter objects inside the oven. The air inside the room where the oven is situated has a temperature of 25°C and the combined heat transfer coefficient for W convection and radiation from the outer surface is 10- If the outer surface temperature of the oven m².K is safe to touch at a temperature of 40°C, what is the required rate of heat loss from the wall in ₂? W m²arrow_forwardA body having a cylindrical shape of length equals temperature is equal to 300 K. The initial temperature of the body is equal to 350 K. If the heat convective coefficient is equal to 4.2 W/m^2.K. What condition should the thermal conductivity k verify in order to apply the lumped capacitance method. 1.9 m and diameter equals to 400 mm is inside a room where the ambient Select one: a. k is less than 4.2 W/m.K b. k is greater than 1.6 W/m.K O c. k is greater than 3.8 W/m.K O d. k is less than 2.1 W/m.Karrow_forwardA composite plane wall consisting of materials, 1.5-in steel (k = 312 BTU-in/HR.ft2.0F) and 2-in aluminum (k = 1400 BTU-in/HR.ft2.0F), separates a hot gas at Ti = 2000F, hi = 2 BTU/HR.ft2.0F, from cold gas at To = 80 deg F, ho = 5. If the hot fluid is on the aluminum side, find: a) Transmittance, U; b) The heat through 100 sq. ft of the surface under steady state condition and c) The interface temperature at the junction of the metals.arrow_forward
- A body having a cylindrical shape of length equals to 1.9 m and diameter equals to 400 mm is inside a room where the ambient temperature is equal to 300 K. The initial temperature of the body is equal to 350 K. If the heat convective coefficient is equal to 1.3 W/m^2.K. What condition should the thermal conductivity k verify in order to apply the lumped capacitance method.arrow_forwardA simple cavity wall consists of two brick layers separated by an air gap of 50 mm. If theinside air temperature is 20oC and the ambient outside temperature is 5oC, calculate theheat flux through the wall. Bricks are 100 mm thick with thermal conductivity kbrick = 1.2W/m K, hin = 10 W/m2 K, hout = 20 W/m2 K. The internal air cavity can be considered still (noconvection) with kair = 0.015 W/m K.arrow_forwardA camera used for monitoring marine life is placed in water where T.. -5°C and the convection heat transfer coefficient h=1420 W/m²K. The camera is operating, but its battery is experiencing thermal runaway, causing the camera to become very hot, and there is volumetric heat generation, qe inside it. There is no heat generation within the waterproof, protective enclosure surrounding it. 00:08 The camera is already compromised; however, its owner hopes to save the protective case. Each interface (between layers A and B and between layers B and C) must not exceed a temperature of 185°C, or these plastic, protective layers will begin to melt. Approximate the camera and its casing as a composite, rectangular object with flat surfaces. The device's total thickness, L=LA + 2LB +Lc, is much smaller than its area (into the page); therefore, 1-D conduction can be approximated through the layers. On the left surface of layer A, the temperature is measured to be T₁ = 8.0°C, and the temperature on…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license