Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.64P
(a)
To determine
The temperature at the node
The temperature at the node
The temperature at the node
The temperature at the node
The temperature at the midpoint.
(b)
To determine
The temperature at the node
The temperature at the node
The temperature at the node
The temperature at the node
The temperature at the midpoint due to reduction in mesh size by factor
(c)
To determine
The plot of the isotherms for the temperature
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve the problem in term of shape function
Hi, kindly solve this problem and show the solution. Thank you
Show detailed step by step solution.
Topic: Thermodynamics
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forwardA section of a composite wall with the dimensions shown below has uniform temperatures of 200C and 50C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA=70W/mK,kB=60W/mK, kC=40W/mK, and kP=20W/mK, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. Repeat Problem 1.34, including a contact resistance of 0.1 K/W at each of the interfaces.arrow_forward
- question is imagearrow_forward1. The four sides of a square plate of side 12 cm, made of homogeneous material, are kept at constant temperature and as shown in Fig. Using a (very wide) grid of mesh 4 cm and applying Gauss-Seidel iteration with ek < 0.0001, find the (steady-state) temperature at the mesh (interior) points. y u = 0 12 u = 100 u = 100 R 12 u = 100arrow_forwardConsider the square channel shown in the sketch operating under steady state condition. The inner surface of the channel is at a uniform temperature of 600 K and the outer surface is at a uniform temperature of 300 K. From a symmetrical elemental of the channel, a two-dimensional grid has been constructed as in the right figure below. The points are spaced by equal distance. Tout = 300 K k = 1 W/m-K T = 600 K (a) The heat transfer from inside to outside is only by conduction across the channel wall. Beginning with properly defined control volumes, derive the finite difference equations for locations 123. You can also use (n, m) to represent row and column. For example, location Dis (3, 3), location is (3,1), and location 3 is (3,5). (hint: I have already put a control volume around this locations with dashed boarder.) (b) Please use excel to construct the tables of temperatures and finite difference. Solve for the temperatures of each locations. Print out the tables in the spread…arrow_forward
- 1. A simple cavity wall consists of two brick layers separated by an air gap of 50 mm. If the inside air temperature is 20oC and the ambient outside temperature is 5 oC, calculate the heat flux through the wall. Bricks are 100 mm thick with thermal conductivity kbrick = 0.5 W/m K, hin = 10 W/m2 K, hout = 20 W/m2 K. The internal air cavity can be considered still (no convection) with kair = 0.015 W/m K. 2. On a day in winter, the outside air temperature drops to -5 oC and the outside convective heat transfer changes to hout = (2 x V) + 8.9 W/m2 K. If the outside wind speed gusts at 50 kph, calculate the change in heat flux for the wall in question 3.arrow_forwardDon’t use Heissler charts to answer this question Heat sterilization of lumber, timbers, and pallets is used to kill insects to prevent their transfer between countries in international trade. This is analogous to food sterilization by heat. A typical requirement here is that the slowest heating point of any woodconfiguration be held at 56 °C for 30 minutes. Consider hot air heating of wooden boards that maintains their surface temperature at 70 °C. The boards are stacked outside and in the winter time they can be considered to be at 0 °Cwhen theyare brought in for heating. The thermal diffusivity of the wood is 9*10-8m2/s. a.Calculate the time from the start of heating for a 2.5 cm thick board to reach a sterilization temperature of 56 °C at its slowest heating point .b.Calculate the heating time when four such boards are stacked together. c.Calculate the ratio of the two heating times (for a single board versus when they are stacked), and explain the ratio. Note: You’re free to…arrow_forwardFor each of the following cases, determine an appropriate characteristic length Lc and the corresponding Biot Bi number that is associated with the transient thermal response of the solid object. Say if the global capacitance approximation is va lid. If temperature information is not provided, evaluate properties T = 300K a)oroidal shape with diameter D = 50mm and cross-sectional area AC = 5 mm², with thermal conductivity k = 2.3W / (mK) The surface of the toroid is exposed to a refrigerant corresponding to a convective coefficient eta = 50 W/( m2.k) b)A long stainless steel heated bar (AISI 304), with rectangular cross section, and dimensions w = 3mm , W = 5mm and L = 100mm . the bar issubjected to a refrigerant that provides a heat transfer coefficient of h =15 W/(m2 K) on all exposed surfaces. c)A long extruded aluminum tube (2024 Alloy) with internal dimensions and external w = 20 mm and W = 24 mm , respectively, suddenly submerged in water, with a convective coefficient of h =…arrow_forward
- Fig. 4 illustrates an insulating wall of three homogeneous layers with conductivities k1, k2, and k3 in intimate contact. Under steady state conditions, both right and left surfaces are exposed to a temperature in a steady state condition at ambient temperatures of T and T , respectively, while ß, and BLare the film coefficients respectively. Assume that there is no internal heat generation and that the heat flow is one-dimensional (dT/dy = 0). For the illustrated ambient temperature in Fig. 4, determine the temperature's distribution at each layer. Material 3 Material 1 Material 2 T= 100 T= 35 °C Kı=20 K3=50 (W/m.k) K3=30 (W/m.k) B1= 10 w/m² °K (W/m.k) BR= 15 w/m²°K 50 mm 35 mm 25 cm Fig. 4arrow_forward1. Consider two-dimensional, steady-state conduction in a square cross section with prescribed surface temperatures. Reducing the mesh size, determine the corresponding nodal temperatures. 4x = 0.045 m 85 °C y L = 0.9 m -230 °C 500 °C -250 °C Xarrow_forward25. Develop an algorithm, along with the program (in python), to find the temperature distribution in the Problem 5.102 NOTE: Use the explicit finite differences method 5.102 Consider the fuel element of Example 5.9. Initially, the element is at a uniform temperature of 250°C with no heat generation. Suddenly, the element is inserted into the reactor core causing a uniform volumetric heat generation rate of q = 108 W/m³. The surfaces are convectively cooled with T = 250°C and_h= 1100 W/m² K. Using the explicit method with a space increment of 2 mm, determine the temperature distribution 1.5 s after the element is inserted into the core. EXAMPLE 5.9 A fuel element of a nuclear reactor is in the shape of a plane wall of thickness 2L = 20 mm and is convectively cooled at both surfaces, with h = 1100 W/m². K and T=250°C. At normal operating power, heat is generated uniformly within the element at a volumetric rate of q₁ = 107 W/m³. A departure from the steady-state conditions associated…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license