Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.13P
To determine
The temperature reached by the heater.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. A steel plate of k=50w/mk and thickness 10cm passes a heat flux by conduction of 25kW/m² . If the
temperature of hot surface of plate is 100C, then what is the temperature of the cooler side of plate?
The temperature distribution across a wall 0.25 m thick at a certain instant of time is T(x) = a + bx + cx², where T is in degrees Celsius and x is
in meters, a = 200 C, b = -200 C/m, and c = 30 C/m². The wall has a thermal conductivity of 2.5 W/m.K. (a) Determine the heat flux into and
out of the wall (q"in and q'out). (b) If the cold surface is exposed to a fluid at 100 C, what is the convection coefficient h?
- Degree Celsius
200°C
q" In-
q'in
q'out=
h =
Choose...
Choose....
Choose...
L₂x
K = 2.5 W/m.k
T(x)-200-200 x +30x²
q" Out
142.7 C
11
L=0.25 m
Fluid
Too = 100 °C
h
A spherical shaped vessel of 1.4 m outer
diameter is 90 mm thick. Find the rate of heat
leakage, if the temperature difference
between the inner and outer surfaces is
220°C. Thermal conductivity of the material
of the sphere is 0.083 W/mK.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.67 In beauty salons and in homes, a ubiquitous device is the hairdryer. The front end of a typical hairdryer is idealized as a thin-walled cylindrical duct with a 6-cm diameter with a fan at the inlet that blows air over an electric heating coil as schematically shown in the figure. The design of this appliance requires two power settings, with which the air blown over the electric heating coil is heated from the ambient temperature of to an outlet temperature of and with exit air velocities of 1.0 m/s and 1.5 m/s. Estimate the electric power required for the heating coil to meet these conditions, assuming that heat loss from the outside of the dryer duct is neglected.arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward3.16 A large, 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer coefficient on one side is and on the other side is . If the temperature of both streams is suddenly changed from 38°C to 93°C, determine how long it takes for the copper plate to reach a temperature of 82°C.arrow_forward
- I am struggling with this question. Part a and barrow_forwardCalculate the quantity of heat conducted per minute through a duralumin circular disc 127 mm diameter and 19 mm thick when the temperature drop across the thickness of the plate is 5 degrees Celsius. Take the coefficient of thermal conductivity of duralumin as 150 W/(m-K).arrow_forwardProblem 2 Suppose that heat conduction occurs at a constant rate of đQ/dt in a hollow sphere with an inner radius of r, at temperature T, and an inner radius of r, at temperature T,. Show that for constant thermal conductivity K, the temperature difference between the two surfaces is given by dQ I dT ( 1 т, - т, 1 4л Кarrow_forward
- Q2. Steam pumped through a long- insulated pipe at a temperature of T= 500 K and provides a convection coefficient of h, = 100 W/m?K at the inner surface of the pipe. The inner and outer radius of the pipe and insulation material are r1 = 10, r2 = 12 and r3 = 17 cm, respectively. The thermal conductivity of the pipe is 100 W/mK. The insulation material is glass fiber and its outer surface is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20 Internal flow Ambient air W/m?K, determine the followings: a. What are the thermal resistance coefficients for convections and conductions b. What is the heat transfer rate per unit length of the pipe c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe. t00 noints)arrow_forwardan unsisulated 100 mm diameter steam pipe runs for 25 meters inside a room whose walls and air are at a temperature of 25 C. the superheated steam inside the pipe maintains the temperature at the pipe surface at 150 C. if the natural convection heat transfer coefficient of the air outside the pipe is 10 w/m^2 k and the surface emissivity is 0.8, compute for the convection thermal resistance of the air film surrounding the pipe in k/Warrow_forwardAn aluminum tube is 200 cm long and has a outside diameter of 2 cm and wall thickness of 5 mm. One end is kept at a constant temperature of 300°C and the other is kept at a temperature or 10 °C. Assume the tube sides are adiabatic. Calculate the heat transfer through the tube. Use finite difference analysis to calculate the temperature very 10 cms.arrow_forward
- Presents the diagram of the problem, necessary formulas, clearance and numerical solution: Two heat reservoirs with respective temperatures of 325 and 275 K are brought into contact by an iron rod 200 cm long and 24 cm2 in cross section. Calculate the heat flux between the reservoirs when the system reaches its steady state. The thermal conductivity of iron at 25 ◦C is 79.5 W/m K.arrow_forwardA thermometric well is placed in a pipe having diameter of 55 mm. Pipe wall temperature is 100°C and heat transfer coefficient inside the pipe is 300 W/m² K. Thickness of thermowell is 1.2 mm and its length is 50 mm. Thermal conductivity of thermowell material. Is 30 W/mK. If the temperature of the gas flowing through the pipe is recorded by thermometer as 200°C, determine the true temperature of gas. If the error in gas temperature is to be reduced by 80% by increasing the length of thermowell, determine the new length of thermowell. Draw a sketch of this thermowell. Take perimeter to area ratio for thermowell as 1/T (T= thickness).arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license