Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.33P

An igloo is built in the shape of a hemisphere, with aninner radius of 1.8 m and walls ofcompacted snow thatare 0.5 m thick. On the inside of the igloo, the surfaceheat transfercoefficient is 6 W/m 2 K; on the outside,under normal wind conditions, it is 15 W/m 2 K . Thethermal conductivity of compacted snow is 0 .15 W/m K . The temperature of the ice cap onwhich the igloo sits is 20 ° C and has the same thermal conductivity as thecompacted snow.

Chapter 4, Problem 4.33P, An igloo is built in the shape of a hemisphere, with aninner radius of 1.8 m and walls ofcompacted

  1. Assuming that the occupants’ body heat provides acontinuous source of 320 W within the igloo, calculatethe inside air temperature when the outsideair temperature is T = 40 ° C . Be sure to considerheat losses through the floor of the igloo.
  2. Using the thermal circuit of part (a), perform aparameter sensitivity analysis to determine whichvariables have a significant effect on the inside airtemperature. For instance, for very high wind conditions,the outside convection coefficient coulddouble or even triple. Does it make sense to constructthe igloo with walls half or twice as thick?

Blurred answer
Students have asked these similar questions
A rectangular wall of length "L" m and height "H" m is made from a thick bricklayer. The rectangular wall has a surface area as 11 m2 & Thermal conductivity as 0.53 W/mK. The wall is subjected to heat transfer due to the outside temperature 43 °C and inside temperature 24 °C. If the energy loss is 11219 kJ in 484 minutes. (HINT: 1 minute = 60 %3D seconds) Determine the following -- i) Heat transfer rate, ii) Thickness of the wall.
A metal cube of 0.1 m sides is being cooled down uniformly from 300°C to 30°C by placing it in cold water at 10°C. The convection coefficient of water around the cube is 40 W/m².K. The properties of the cube material are as follows - thermal conductivity: 137 W/m-K, density: 1600 kg/m³; specific heat: 800 J/kg.K. Neglect radiation. Find the time required for coo cooling. 1426-2
Convection heat transfer from a plate (2 m x 2 m) is 450 W. If surface temperature of plate is 450 K and surrounding temperature is 300 K, what will be value of heat transfer coefficient?

Chapter 4 Solutions

Introduction to Heat Transfer

Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license