Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.35P
(a)
To determine
The temperature of the device.
(b)
To determine
The permissible operating power.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The inner and outer radii of a hollow cylinder are 15 mm (r, ) and 25 mm (r, ), respectively. The
temperatures of the inner and outer walls are 400°C (T,) and 350°C (T,), respectively. The thermal
conductivity of the cylinder material obeys the relationship K = (400-0.05T) W/mK where T is in
degrees Celsius. Find the heat transferred from the hollow cylinder per unit length. The thermal
conductivity,
Quiz #2 (Homework)
Problem: A plane wall 6.0 cm thick generates heat internally at the rate of 0.3 MW/m³3. One side of the
wall is insulated, and the other side is exposed to an environment at 93°C. The convection heat-transfer
coefficient between the wall and the environment is 570 W/m² °C. The thermal conductivity of the wall is
21 W/m.°C.
(a) Find the temperature distribution in the wall.
(b) Sketch the temperature distribution in the wall and fluid environment adjacent to the wall.
(c) What is the maximum temperature in the wall?
(d) Calculate the heat transfer rate at wall surface.
(e) Is the heat transfer rate equal at each point in the wall?
Given :
Solution:
Consider a plate whose thickness is 2L=20 cm and thermal conductivity is 20 W/mK. Heat generation inside the plate
(104 W/m³) is uniform. The plate is placed in an environment at T=20°C and convective heat transfer coefficient is
h=16 W/m²K. Find the temperature at the center of plate.
h
To
-L
O a. 45 °C
O b. 75 °C
O c. 67 °C
O d. 85 °C
О е. 90 °С
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forward1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward
- 2.2 A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.arrow_forward2.15 Suppose that a pipe carrying a hot fluid with an external temperature of and outer radius is to be insulated with an insulation material of thermal conductivity k and outer radius . Show that if the convection heat transfer coefficient on the outside of the insulation is and the environmental temperature is , the addition of insulation actually increases the rate of heat loss if , and the maximum heat loss occurs when . This radius, is often called the critical radius.arrow_forwardA plane wall 15 cm thick has a thermal conductivity given by the relation k=2.0+0.0005T[W/mK] where T is in kelvin. If one surface of this wall is maintained at 150C and the other at 50C, determine the rate of heat transfer per square meter. Sketch the temperature distribution through the wall.arrow_forward
- A pipe made of material A have an outside diameter of 30 cm and inside diameter of 25 cm. The pipe is insulated by 31 cm thickness of Material B. The thermal conductivity of Material A and Material B is 70 and 11 respectively. If the w w temperature of the inner layer of the pipe is 1200K, the temperature of the outside layer pipe is 1100K, and the temperature on the outer layer of insulation is 350K. Find Q and Resistance to heat flow. L= 1.31 m m-K m-Karrow_forwardConsider a plate whose thickness is 2L=20 cm and thermal conductivity is 44 W/mK. Heat generation inside the plate (5x105 W/m³) is uniform. The surface of the plate is maintained at Ts=10°C. Find the temperature at the center of plate. T Ts -L L X O a. 45 °C ОБ.75 °С О с. 67 оС O d. 90 °C O e. 85 °Carrow_forward(3) A thick silver wire resistance heater measures 2 m in length with a diameter of 2.5 cm. The power output of the wire is 400 watts. If the maximum temperature in the wire is 800 K, what is the temperature of the wire at r = cm? 2 L=2m 0.75 • Q = Egen = 400 W wire d = 2.5cm = 0.025m R = 0.0125m Tmax=800k = T (r = 0) T(r = 0.0075m) = ? Rarrow_forward
- Q2. Steam pumped through a long- insulated pipe at a temperature of T= 500 K and provides a convection coefficient of h, = 100 W/m?K at the inner surface of the pipe. The inner and outer radius of the pipe and insulation material are r1 = 10, r2 = 12 and r3 = 17 cm, respectively. The thermal conductivity of the pipe is 100 W/mK. The insulation material is glass fiber and its outer surface is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20 Internal flow Ambient air W/m?K, determine the followings: a. What are the thermal resistance coefficients for convections and conductions b. What is the heat transfer rate per unit length of the pipe c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe. t00 noints)arrow_forwardand heat transfer coefficients. Determine the thermal conductivity of a test panel 150 mm X 150 mm and 12 mm thick. 290 K and 300 K. Describe the different ways of therma! conductivity 1n solids iy nteactios if during a two-hour period 8.4 X 10 J are conducted through the pancl when the two face: are at Teydk İCA 1メーx- 入-入 {x'x +arrow_forwardConsider a plate whose thickness is 2L=16 cm and thermal conductivity is 50 W/mK. Heat generation inside the plate (5x104 W/m³) is uniform. The plate is placed in an environment at 10°C and convective heat transfer coefficient is h=50 W/m²K. Find the temperature at the surface of plate. To -L O a. 45 °C O b. 67 °C O c. 85 °C O d. 90 °C Ое. 75 °Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license