Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.53P
(a)
To determine
The temperature distribution in the rod.
(b)
To determine
The heat generation rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please help with this im not sure what i did wrong
A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation:
+-=
dx2 =0
W
where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that
m-K
T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the
temperature at nodes 3 and 4.
Insulated
Ar
, T
For the answer window, enter the temperature at node 4 in Kelvin (K).
Your Answer:
EN
SORN
Answer
units
Pri
qu) 232 PM
4/27/2022
99+
66°F Sunny a .
20
ENLARGED
oW TEXTURE
PRT SCR
IOS
DEL
F8
F10
F12
BACKSPACE
num
-
%3D
LOCK
HOME
PGUP
170
whats are the asumptions i should know before doing this problem I know its one dimensional anything else
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward2.15 Suppose that a pipe carrying a hot fluid with an external temperature of and outer radius is to be insulated with an insulation material of thermal conductivity k and outer radius . Show that if the convection heat transfer coefficient on the outside of the insulation is and the environmental temperature is , the addition of insulation actually increases the rate of heat loss if , and the maximum heat loss occurs when . This radius, is often called the critical radius.arrow_forward
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward5.10 Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder , the diameter, the thermal conductivity, and the rate of heat generation. Take the temperature at the surface as your datum. What is the equation for the center temperature if the difference between center and surface temperature is when the heat generation is ?arrow_forwardA very long, rectangular cross-section block is made from metal with the following properties: thermal conductivity = 130 W/mK, density = 2771 kg/m³, and specific heat capacity = 703 J/kgK. Initially all 4 sides of the cross section are maintained at 373 K. Then the temperature of one side is suddenly increased to 473 K. The temperature profile in the block will be investigated using an explicit finite difference model. If the time step is fixed at 5.5 seconds, what is the limit for node spacing that should be used to ensure stability of the solution? Give your numerical answer in mm to 1 decimal place.arrow_forward
- A hollow cylindrical copper conductor 1.27cm. i.d. and 5.1cm. o.d. carries a current density 5000 amp/cm². For copper K = .38 kW/m°K and electrical resistivity = 2 x 10-6 ohm cm. Find the position and magnitude of the maximum temperature and the internal and external heat removal when (a) the outside temperature is 37.8°c and no heat removal occurs on the inside and (b) the outside is at 37.6°C and the inside at 27.2°C.arrow_forward2arrow_forwardPlease I need solutions speed time pleasearrow_forward
- Please try to solve fast thank uarrow_forwardPlease provide accurate answer with proper steps The wall of the furnace is 30.48 mm thick and is insulated from outside. Thermal conductivity of the wall material is 0.1 W/m K and the insulation material is 0.01 W/m K. The furnace operates at 650 0C and the ambient temperature is 30 0 Allowable temperature on the outer side of the insulation is 1000C. Determine the overall heat transfer by conduction per unit area occurring across a furnace wall made from clay. If the air side heat transfer coefficient is 0.4 W/m2 K, calculate the minimum insulation thickness requirement.arrow_forwardThe 1-4-7 surface in the section shown in the figure is insulated. The heat transfer coefficient on the surface 1-2-3 is 28W /m? °C. The thermal conductivity of the solid material is 5.2W / m°C. Calculate the temperatures of the points 1, 2, 4 and 5 using the finite difference method. insulated T = 0°C 30 cm h = 28 W/m?. C+ 30 cm T, = T3 = T, = 38°C T3 = T6 = 10°C 00arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license