Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.75P
To determine
The temperature at the midpoint.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hi, kindly solve this problem and show the solution. Thank you
Please answer the question with explicit scheme and calculation is done until the second time!
In the design of a certain computer application, a heat flow simulation is required. In the
simulation, the heat conductor, which is of length 10m, has a perfectly insulated surface.
The temperature at both ends of the conductor is kept consistently at zero. The initial
temperature at any point of the conductor is uniform at 25°C.
The 1-dimensional heat equation is given as follows:
for all 0
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- P3arrow_forwardAn engineer seeks to study the effect of temperature on the curing of concrete by controlling the curing temperature in the following way. A sample slab of thickness L is subjected to a heat flux, qw, on one side, and it is cooled to temperature T1 on the other. Derive a dimensionless expression for the steady temperature in the slab. Plot the expression and offer a criterion for neglecting the internal heat generation in the slab.arrow_forwardGive step by step answer and. Cleararrow_forward
- A solid body is at an initial temperature of 50°C and at time=zero the boundary condition is applied. Obtain the temperature distribution for the given grid for three time steps. (Choose a desirable and proper time step.) m2 x= 10-4 S T2 Δx Δy 10 cm Let: T1=54 T2=42 10°c T1 90°Carrow_forwardA two dimensional rectangular plate is subjected to prescribed boundary conditions. Using the results of the analytical solution for the heat equation presented in class, calculate the temperature at the midpoint (1,0.5) by considering the first five nonzero terms of the infinite series that must be evaluated. T₁ = 50°C y (m) 1 T₂ = 150°C T₁ = 50°C ►x (m) 2 -T₁ = 50°Carrow_forward2arrow_forward
- 1. The four sides of a square plate of side 12 cm, made of homogeneous material, are kept at constant temperature and as shown in Fig. Using a (very wide) grid of mesh 4 cm and applying Gauss-Seidel iteration with ek < 0.0001, find the (steady-state) temperature at the mesh (interior) points. y u = 0 12 u = 100 u = 100 R 12 u = 100arrow_forwardFind the steady-state temperature distribution in a (very long) solid cylinder if the boundary temperatures are T(s=0, θ, z)=0 and T(s, θ, z=0)=s*sinθarrow_forwardSolve fast and correctly. Handwritten answer please.arrow_forward
- Problem 3: Refer to the rectangular region in the figure below, the inner boundary surfaces are insulated and heat genrated within the cast iron solid ġ" (kw/m'). Determine the temperature distribution within the salid where the boundary surfaces are kept at 20 C. where is the location of the maximum temperature? how much it will be if a =2b = 20 cm and c = 2d = 10 cm and heat gencration is 1 kW/m?? 2b 2d ZInsulation 20 ġ" (kW/m) 2aarrow_forwardFind the steady-state temperature distribution in a metalic plate 20 cm by 60 cm if the two adjacent plates are held at 200 degree and the other two sides at zero degree.arrow_forwardThere is a long cylinder inside an oven and we are using lumped capacitance method to find the temperature at its extremes. The temperature at the centre of the cylinder is 1000 C, what will be the temperature at its one end where it is away from heat source according to our calculations? not sufficient information more than 1000 C equal to 1000 C less than 1000 Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license