Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.74P
(a)
To determine
The unknown nodal temperature and heat transfer rate.
(b)
To determine
The temperatures and heat rate with grid spacing 10mm. Also, the temperature field and heat rate for values of h = 5, 200 and 1000 W/m2K as well as h tends to infinity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H.W.:
Q1: Consider steady two-dimensional heat transfer in a long solid body whose cross section is
given in the figure. The temperatures at the selected nodes and the thermal conditions at the
boundaries are as shown. The thermal conductivity of the body is k = 45 W/m. °C, and heat is
generated in the body uniformly at a rate of g = 6 x 106 W/m3. Using the finite difference
method with a mesh size of Ax = Ay = 5.0 cm, determine (a) the temperatures at nodes 1, 2, and
3 and (b) the rate of heat loss from the bottom surface through a 1-m-long section of the body.
.
200°C
5 cm
5 cm
g=6x 10 W/m²
260
3
240
305
290
Insulation
1
Convection
T₂= 20°C, h= 50 W/m² °C
350°C
325
Please solve correctly and don't copy and paste chegg answers and solve by hand
A vertical cylinder 1.75 m tall and 0.3 m in diameter might be used to approximate a man
for heat-transfer purposes (thermal conductivity, k-0.8 /m°C). Suppose the center temperature of
the cylinder is 37°C, the surface emissivity is 0.9, and the cylinder is placed in a large room
where the air temperature is 20°C and the heat transfer coefficient is 20W /m2°C and the wall
temperature is 10°C.
1-Sketch the equivalent thermal resistance network.
2-Neglect the radiation and:
-Cakculate the heat lost from the from the cylinder.
-Determine the surface temperatures of the cylinder.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forward2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the atmosphere from outer space. If its original temperature is 38°C, the effective average temperature of the atmosphere is 1093°C, and the effective heat transfer coefficient is , estimate the temperature of the shell after reentry, assuming the time of reentry is 10 min and the interior of the shell is evacuated.arrow_forward
- 1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forwardAn electronic device that internally generates 600 mW of heat has a maximum permissible operating temperature of 70C. It is to be cooled in 25C air by attaching aluminum fins with a total surface area of 12cm2. The convection heat transfer coefficient between the fins and the air is 20W/m2K. Estimate the operating temperature when the fins are attached in such a way that (a) there is a contact resistance of approximately 50 K/W between the surface of the device and the fin array and (b) there is no contact resistance (in this case, the construction of the device is more expensive). Comment on the design options.arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward
- The handle of a ladle used for pouring molten lead is 30 cm long. Originally the handle was made of 1.9cm1.25cm mild steel bar stock. To reduce the grip temperature, it is proposed to form the handle of tubing 0.15 cm thick to the same rectangular shape. If the average heat transfer coefficient over the handle surface is 14 W/m K, estimate the reduction of the temperature at the grip in air at 21C.arrow_forwardConsider steady two-dimensional heat transfer in a long solid body whose cross section is given in the figure below. The temperatures at the selected nodes and the thermal conditions at the boundaries. The thermal conductivity of the body is k = 45 W/m °C, and heat is generated in the body uniformly at a rate of g. = 6 × 106 W/m³. Using the finite difference method with a mesh size of Ax-Ay • determine (a) the temperatures at nodes 1, 2, and 3 = 5.0 cm, n 360 305 350°C 200°C 5 cm 310 Convection 2 T-30°C. & 50 W/m². C 325arrow_forwardA very long, rectangular cross-section block is made from metal with the following properties: thermal conductivity = 130 W/mK, density = 2771 kg/m³, and specific heat capacity = 703 J/kgK. Initially all 4 sides of the cross section are maintained at 373 K. Then the temperature of one side is suddenly increased to 473 K. The temperature profile in the block will be investigated using an explicit finite difference model. If the time step is fixed at 5.5 seconds, what is the limit for node spacing that should be used to ensure stability of the solution? Give your numerical answer in mm to 1 decimal place.arrow_forward
- Steel pipe 5 cm thick, 1.0 m long and 12 cm deep, covered with 8 cm thick insulation. The wall temperature in the steel pipe is 100 ° C. The ambient temperature around the insulated pipe is 24 ° C. The convection heat transfer coefficient outside the insulation surface is 50 W / (m² K). The thermal conductivity of steel is 54 W / (m K), and the thermal conductivity of the insulation is 0.04 W / (m K). Count; a. Heat loss per meter of pipe = watt. b. Temperature between steel pipe and insulation. = ° C.arrow_forwardSteel pipe 5 cm thick, 1.0 m long and 12 cm deep, covered with 8 cm thick insulation. The wall temperature in the steel pipe is 100 ° C. The ambient temperature around the insulated pipe is 24 ° C. The convection heat transfer coefficient outside the insulation surface is 50 W / (m² K). The thermal conductivity of steel is 54 W / (m K), and the thermal conductivity of the insulation is 0.04 W / (m K). Count; a. Heat loss per meter of pipe ... (watts)b. temperature between steel pipe and insulation ... (° C)arrow_forwardSteel pipe 5 cm thick, 1.0 m long and 10 cm deep, covered with 6 cm thick insulation. The wall temperature in the steel pipe is 100 ° C. The ambient temperature around the insulated pipe is 24 ° C. The convection heat transfer coefficient outside the insulation surface is 50 W / (m² K). The thermal conductivity of steel is 54 W / (m K), and the thermal conductivity of the insulation is 0.04 W / (m K). Count; a. Heat loss per meter of pipe = Answer watt. b. Temperature between steel pipe and insulation. = Answer ° C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license