A two-dimensional rectangular plate is subjected to prescribedboundary conditions. Using the results of the exactsolution for the heat equation presented in Section 4.2,calculate the temperature at the midpoint
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Introduction to Heat Transfer
- The subject is Mechanics of Deformable Bodiesarrow_forwardA 1-D conduction heat transfer problem with internal energy generation is governed by the following equation: +-= dx2 =0 W where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that m-K T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the temperature at nodes 3 and 4. Insulated Ar , T For the answer window, enter the temperature at node 4 in Kelvin (K). Your Answer: EN SORN Answer units Pri qu) 232 PM 4/27/2022 99+ 66°F Sunny a . 20 ENLARGED oW TEXTURE PRT SCR IOS DEL F8 F10 F12 BACKSPACE num - %3D LOCK HOME PGUP 170arrow_forwardPlease answer the question with explicit scheme and calculation is done until the second time!arrow_forward
- Let an aluminum rod of length 20 cm be initially at the uniform temperature of 25° C. Suppose that at time t = 0, the end x = 0 is cooled to 0° C while the end x = 20 is heated to 60° C, and both are thereafter maintained at those temperatures. (a) Find the temperature distribution in the rod at any time t.arrow_forwardA wall of a house is made from two layers of bricks enclosing a layer of insulation. A radiator is positioned to cover the whole internal surface, and used intermittently when the internal temperature is low. The external surface is exposed to the outside air. Which of the following assumptions could be used to identify the relevant reduced form of the conduction equation to find the temperature in the wall. a. Conduction is mainly in two directions. b. Conduction is mainly in one direction. c. The wall properties are homogeneous. d. Steady conditions exist. e. Unsteady conditions exist. f. There is an internal volumetric heat generation in the wall.arrow_forward2. A slab of thickness Lis initially at zero temperature. For times t> 0, the boundary surface at x 0 is subjected to a time-dependent prescribed temperature f(t) defined by: a + bt for 0Ti and the boundary at x = L is kept insulated. Using Duhamel's theorem, develop an expression for the temperature distribution in the slab for times (i) t t1.arrow_forward
- i need the answer quicklyarrow_forwardThe initial temperature distribution of a 5 cm long stick is given by the following function. The circumference of the rod in question is completely insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat conduction along the rod as a function of time and position ? (x = 1.752 cm²/s for the bar in question) 100 A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ + 1 3π TC3 .....) 100 t + ··· ....... 13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t B) 3/3 t + …............) C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t – D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+ t + ··· .........) t +.... t + ··· .........) …..)arrow_forwardi need the answer quicklyarrow_forward
- Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forwardSuppose that a finite-difference solution has been obtained for the temperature T, near but not at an adiabatic boundary. in most instances, it would be necessary or desirable to evaluate the temperature at the boundary point itself. for this case of an adiabatic boundary, develop an expression for the temperature at the boundary T1, in the terms of temperatures at neighbouring points T2, T3, etc, by assuming that the temperature distribution in the neighbourhood of the boundary is a straight line a second-degree polynomial a cubic polynomial (you only need to indicate how you would derive this one) indicate the order of T.E in each of the above approximations used to evaluate T1arrow_forward2. The slab shown is embedded in insulating materials on five sides, while the front face experiences convection off its face. Heat is generated inside the material by an exothermic reaction equal to 1.0 kW/m'. The thermal conductivity of the slab is 0.2 W/mk. a. Simplify the heat conduction equation and integrate the resulting ID steady form of to find the temperature distribution of the slab, T(x). b. Present the temperature of the front and back faces of the slab. n-20- 10 cm IT- 25°C) 100 cm 100 cmarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning