Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.3P
Consider the two-dimensional rectangular plate ofProblem 4.2 having a thermal conductivity of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The initial temperature distribution of a 5 cm long stick is given by the
following function. The circumference of the rod in question is completely
insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat
conduction along the rod as a function of time and position ? (x =
1.752 cm²/s for the bar in question)
100
A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ +
1
3π
TC3
.....)
100
t + ··· .......
13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t
B)
3/3
t + …............)
C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t
–
D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t
E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+
t + ··· .........)
t +....
t + ··· .........)
…..)
2. The slab shown is embedded in insulating materials on five
sides, while the front face experiences convection off its face.
Heat is generated inside the material by an exothermic
reaction equal to 1.0 kW/m'. The thermal conductivity of the
slab is 0.2 W/mk.
a. Simplify the heat conduction equation and integrate
the resulting ID steady form of to find the
temperature distribution of the slab, T(x).
b. Present the temperature of the front and back faces of
the slab.
n-20-
10 cm
IT- 25°C)
100 cm
100 cm
Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2)
under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated.
9" (W/m)
T=0°C
T=0°C
W=(10*32)cm
B=(30*32)cm
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation: +-= dx2 =0 W where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that m-K T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the temperature at nodes 3 and 4. Insulated Ar , T For the answer window, enter the temperature at node 4 in Kelvin (K). Your Answer: EN SORN Answer units Pri qu) 232 PM 4/27/2022 99+ 66°F Sunny a . 20 ENLARGED oW TEXTURE PRT SCR IOS DEL F8 F10 F12 BACKSPACE num - %3D LOCK HOME PGUP 170arrow_forwardQ1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forward3.10 By neglecting lateral temperature variation in the analysis of fins, h,T. 木 H two-dimensional conduction is modeled as a one-dimensional H problem. То examine this T, h,T. approximation, consider a semi- infinite plate of thickness 2H. The base is maintained at uniform temperature T,. The plate exchanges heat by convection at its semi- infinite surfaces. The heat transfer coefficient is h and the ambient temperature is T.. Determine the heat transfer rate at the base.arrow_forward
- Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are ρ =1200 kg/m 3, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q =1000 W/m 2 is applied to the upper surface. The right and left surfaces are also kept at 0oC. Bottom surface is insulated.arrow_forwardPlease don't provide handwritten solution ....arrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p= 62400 kg/m', k-400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q%=1000 W/m² is applied to 2. the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9% (W/m³) y4 T = 0 °C T = 0°C W= 520 cm B=1560 cmarrow_forward
- Write legibly, provide manual step by step solution, and diagram for below given problem. The heat transfer across a 5” wall of firebrick is 500 W/m2. If the surface temperature on cold side is 30oC and thermal conductivity of brick is 0.7 Btu/hr-ft-oF, find the temperature on hot side.arrow_forwardT1=68 T2=43 Q3:arrow_forwardDerive from the 4.93 equation to the 4.94 equationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license