Consider the thin integrated circuit (chip) of Problem3.150. Instead of attaching the heat sink to the chipsurface, an engineer suggests that sufficient coolingmight be achieved by mounting the top of the chiponto a large copper
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Introduction to Heat Transfer
- [2] An array of electronic chips is mounted within a sealed rectangular enclosure, and cooling is implemented by attaching an aluminum heat sink (k = 180 W/m K). The base of the heat sink has dimensions of w1 = W2 = 100 mm, while the 6 fins are of thickness t = 10 mm and pitch S = 18 mm. The fin length is Lr = 50 mm, and the base of the heat sink has a thickness of Lb = 10 mm. L -Chips Water u T Electronic package, P elec If cooling is implemented by water flow through the heat sink, with uo = 3 m/s and To = temperature Tb of the heat sink when power dissipation by the chips is Pelec = 1800 W? The average convection coefficient for surfaces of the fins and the exposed base may be estimated by assuming parallel flow over a flat plate. Properties of the water may be approximated as k = 0.62 W/m-K, p = 995 kg/m3, Cp = 4178 J/kg-K, v = 7.73 x 10-7 m2/s, and Pr = 5.2. 17°C, what is the base a.) Base temperature. А. 37.8°C B. 43.9°C С. 31.4°С D. 46.2°Carrow_forwardsolve Temperature at mid-point of the fins.arrow_forwardFind the rate of heat transfer if the cylinder in a stainless steel rod.k = 15 W/m·K (8.7 Btu/h·ft·F), L = 1 m (3.3 ft), Th = 200 C (392 F), Tc= 100 C(212 F), A = 5 cm2 (0.8 in2).arrow_forward
- ! * The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k= 0.029 W/m. K. The measured temperature difference across a 20-mm-thick sheet of the material is T1 T2 = 10°C. The heat flux and heat rate through a 2 m x 2 m sheet of the insulation is 16.5 W/m² and 68 W Option 1 14.5 W/m² and 29 W www. Option 2arrow_forwardHomework O H.W. 1: The walls of a refrigerator are typically constructed by sandwiching a layer of insulation between sheet metal panels. Consider a wall made from fiberglass insulation of thermal conductivity k; = 0.046 W/m.K and thickness L, = 50 mm and steel panels, each of thermal conductivity k, = 60 W/m.K and thickness L, = 3 mm. If the wall separates refrigerated air at T = 4 C from ambient air at T,. = 25 C, what is the heat gain per unit surface area? Coefficients associated with natural convection at the inner and outer surfaces may be approximated as h, = h, = 5 W/m?.K. %3D %3D L; = 0.050 m K K Lo = 0.003 m Refrigerated air Ambient air Too.i = 4°C hi = 5 W/m2-K To,o = 25°C ho = 5 W/m2-K %3D Panel (2) kp = 60 W/m-K Insulation k; = 0.046 W/m-K 22 Warith Alanbiyaa (Dr. ALI M) Heat Transfer Page 11 ofarrow_forwardEnergy management and Audit question A steam main 150mm outside diameter containing wet steam at 28 bar is insulated with an inner layer of diatomaceous earth, 40mm thick, and an outer layer of 85% magnesia, 25mm thick. The inside surface of the pipe is at the steam temperature, and the heat transfer coefficient for the outside surface of the lagging is 17 W/m2 K. The thermal conductivities of diatomaceous earth and 85% magnesia are 0.09, and 0.06 W/m K respectively. Neglecting radiation, and the thermal resistance of the pipe water flow rate is 1400 kg/h. Taking the specific heat capacity of water as 4.19 kj/kg K, calculate; The required pipe length for parallel-flow The required pipe length for counter-flowarrow_forward
- Q. Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 130 °C. Circular aluminum alloy 2024-T6 fins k = 186 W/m.K of outer diameter 6 cm and constant thickness 1 mm are attached to the tube. The space between the fins is 3 mm, and thus there are 250 fins per length of the tube. Heat is transferred to the surrounding air at 25 °C, with a heat transfer coefficient of 40W/m².K. Determine: 1. The increase in heat transfer from the tube per meter of its length as result of adding fins. 2. The efficiency of the fins. 3. Temperature at mid-point of the fins. Note: Equations and any other data required can be taken from textbook/handbook. 130°C 25°Carrow_forwardThe thermal conductivities of wood is kwood = 0.1W/(m°C)and air is kair = 0.0234W/(m°C). Part A If the temperature of the room is 20°C and outside is 10°C, find the rate of heat flow for a wall of wood with area = 10 m² and thickness of 5cm. O 60 W O 304 W O 34 W O 200 W O 100 W Submit Request Answer Part B The wall of wood with thickness of 5cm is now replaced with two layers of wood and a gap of air between the wood. Each layer of wood has a 2.5cm thickness and the gap is 1cm. The rate of heat flow will, decreases. increases. stay the same. Submit Request Answer Part C The temperature in the air gap will be, O 20°C, between 10°C and 20°C, O 10°C,arrow_forwardVI.2 A coolant is transported in a pipe with external wall temperature of -30 °C and with outer diameter of 10 cm. The tube is thermally isolated by two layers: 1) an internal layer of foamed polypropylene with thermal conductivity of 0.08 W.m.K and thickness of 10 cm, and 2) an external felt layer with thermal conductivity of 0.05 W.m.K and thickness of 5 cm. Temperature of the outer surface is 25 °C. Calculate the heat flow from the surroundings to the tube with length of 100 m. What is the temperature on the boundary between polypropylene and felt layers? Result: The heat flow from the surroundings is approx. 1.77 kW. Temperature between layers of isolation is 8.8 °C.arrow_forward
- As2 Calculate the temperature 7 cm into the mineral wool layer from the warm side measured in one wall that is built from the outside in according to the following material layers: Wood panel ventilated R = 0.20 m2K / W Mineral wool 200 mm λ = 0.033 W / mK Plastic foil R ≈ 0 m2K / W Plasterboard 13 mm λ = 0.22 W / mK The temperature outside is -10 ◦C and inside 22 ◦C. The heat transfer resistors are on the inside Rsi = 0, 13 and on the outside Rse = 0, 04 m2K / Warrow_forwardThe wall of an furnace consists of three materials having, kA = 20 W/m. K and kc = 50 W/m. K, and known thickness, LA = 0.30 m and Lc= 0.15 m. The third material, B, which is sandwiched between materials A and C, LB = 0.15 m. Under steady-state operating conditions, the outer, inner surface temperature and heat transfer coefficient is To=20°C, T,i= 500 °C, and hi 25 W/m². K. What is the value of KB? =arrow_forwardNote:- • Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. • Answer completely. • You will get up vote for sure.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning