Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.31P
To determine
The corresponding heat rate
The surface temperature of the hole.
The surface temperature of the square block.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical electrical heating element is used to heat up a baking oven. The heating element bears a voltage of 120 V/m, and has an electrical resistance of 1000 Ω/m. A ceramic pipe of inside radius rin = 2 mm, and outside radius rout = 5 mm encases the heating element. Thermal conductivity of the ceramic is k = 0.2 W/m-K. Given that the oven air temperature is T∞ = 180oC and convection coefficient h = 10 W/m2-K, find the temperature on the inside of the ceramic pipe.
An oven made of stone with 3 m length and semi-cylindrical shape losses heat from inlet section of the surface shell (ri = 50 cm) to outlet section (ro = 62 cm) by convection and radiation. According to the system conditions showing on the following figure; calculate Ti value if To temperature is 35 °C (Assume steady state and one dimensional condition and ε = 0,90; σ = 5,67x10-8 W/m2K4)
3
• A piece of chromium steel of length 7.4cm (density= 8780kg/m³,
k=50 W/m K) and specific heat capacity (C,=440 J/kg K) with mass
1.27 kg is rolled into a solid cylinder and heated to a temperature
of 600 °C and quenched in oil at 36 °C. Show that the lumped
capacitance system analysis is applicable and find the temperature of
the cylinder after 4min. What is the total heat transfer during this
period? You may take the convective heat transfer coefficient
between the oil and cylinder at 280 W/m2K.
delete
home
< backsac
ock
7.
home
F
enter
4.
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An oven made of stone with 3 m length and semi-cylindrical shape losses heat from inlet section of the surface shell (ri = 50 cm) to outlet section (ro = 62 cm) by convection and radiation. According to the systemconditions showing on the following figure; calculate Ti value if To temperature is 35 °C (Assume steady state and onedimensional condition and ε = 0,90; σ = 5,67x10-8 W/m2K4)arrow_forwardA plane wall 20 cm thick with uniform internal heat generation of 200 kW/m3 is exposed to a convection environment on both sides at 50◦C with h = 400 W/m2 · ◦C. Calculate the center temperature of the wall for k = 20 W/m · ◦C.arrow_forwardYou have a solid with a semicylindrical shape. One ofthe bases is located in θ = 0 , of area (r 2 - r 1 )L and is maintained at temperature T 0 and the other islocated at θ = π and also of area equal to (r 2 -r 1 )Lhas temperature is equal to Tπ. The conductivityThe thermal temperature of the solid varies linearly with thetemperature from k 0 at T=T 0 to kπ at T=Tπ a. Find the temperature distribution instationary stateb. Find the total heat flux through thesurface at θ = 0.arrow_forward
- 10 hot rods (L = 5 m and d = 2 cm) are buried in the ground parallel to each other each rod is 10 cm apart and at a depth 3 m from the ground surface. The thermal conductivity of the soil is 0.6 W/m K. If the surface temperature of the rods and the ground are 600 K and 30 °C, respectively. Draw the figure and determine the rate of heat transfer from the fuel rods to the atmosphere through the soilarrow_forwardA gas filled tube has 2 mm inside diameter and 25 cm length. The gas is heated by an electrical wire of diameter 50 microns (o.05 mm) located along the axis of the tube. Current and voltage drop across the heating element are 0.5A and 4 volts, respectively. If the measured wire and inside tube wall temps are 175C and 150C respectively, find the thermal conductivity of the gas filling the tube.arrow_forward2. A steel plate of k=50w/mk and thickness 10cm passes a heat flux by conduction of 25kW/m² . If the temperature of hot surface of plate is 100C, then what is the temperature of the cooler side of plate?arrow_forward
- Answer this ASAP,thx An empty sphere is made of aluminum (k = 202 W/m. °C) with an inner diameter of 4 cm and an outer diameter of 8 cm. The inside temperature is 100°C and If the ball above is coated with an insulating material having k = 50 mW/m. °C 1 cm thick. The outside of this insulation is in contact with an environment having h = 20 W/m.°C and Ts = 10°C, calculate the heat transfer under these conditions.arrow_forwardI am struggling with this question. Part a and barrow_forwardA cylindrical reactor made of copper with a radius of a= r=5mm has a heat conduction coefficient of k=386 W/moC, and there is heat generation at e ̇= (q ) ̇= 4x10^8 W/m3 inside this reactor. The cylindrical reactor convection heat transfer coefficient is h=2000 W/m0C and 〖T_(ambient= ) T〗_∞= 30 oC by convection, it cools down from the reactor surface to the center. According to the given boundary conditions a)Find the reactor surface temperature and the temperature T(a) at r=a. (VARIABLES: r=1-10mm, T_∞= 0-100oC) b) q(a) =((q ) ̇ * a )/ 2 = (e ̇ * a )/ 2 then find the heat flux amount in kW/m2arrow_forward
- Problem 5: A hollow sphere is constructed of aluminum with an inner diameter of 4 cm and an outer diameter of 8 cm. The inside temperature is 100◦C and the outer temperature is 50◦C. Calculate the heat transfer. Problem 6: Suppose the sphere in Problem 5 is covered with a 1-cm layer of an insulating material having k = 50 m W/m · ◦C and the outside of the insulation has a temperature of 35 oC. The inside of the sphere remains at 100◦C. Calculate the heat transfer under these conditions.arrow_forwardA glass window with an area of 0.625 m² is installed in the wooden outside wall of a room. The wall dimensions are 25 x 3.05 m. The wood has a k of 0.151W/m.K and is 3.05 cm thick. The glass has a k of 0.692W/m.K and is 5.0 mm thick. The temperature of the inside room is 27°C and outside air temperature is 268K. Find the heat loss through wooden wall and the glass window ?arrow_forwardStainless steel pipes with a thermal conductivity of 17 W/ (m° C) are used to transport hot oil. The temperature inside the tube is 130 ° C. The inner diameter of the pipe is 8 cm and the thickness of the pipe wall is 2 cm. The pipe is then insulated with 4 cm thick insulation with a thermal conductivity of 0.035 W / (m° C). The ambient temperature of the pipe is 25 ° C. Calculate the temperature between the steel and the insulation if we assume a steady state. A picture of the pipe can be seen below.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Stresses Due to Fluctuating Loads Introduction - Design Against Fluctuating Loads - Machine Design 1; Author: Ekeeda;https://www.youtube.com/watch?v=3FBmQXfP_eE;License: Standard Youtube License