Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.32P
(a)
To determine
The fin heat rate and junction temperature for base materials aluminum and stainless steel.
(b)
To determine
The fin heat rate and junction temperature for base materials aluminum and stainless steel with thermal contact resistance.
(c)
To determine
To plot: Heat rate as a function of convection coefficient.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hi, kindly help me with this and show the complete solution. Thank you
A small stainless-steel rod 7 mm in diameter was heated so it is at 300 °C. It is quenched in a bath of room temperature water, where it has a heat transfer coefficient of 30 W/m2K. How long will it take to be cool to the touch? Justify your answer and all assumptions. (You will generate a time constant and the Bi for this problem.
I need the answer as soon as possible
Chapter 4 Solutions
Introduction to Heat Transfer
Ch. 4 - In the method of separation of variables (Section...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Consider the two-dimensional rectangular plate...Ch. 4 - A two-dimensional rectangular plate is subjected...Ch. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Free convection heat transfer is sometimes...Ch. 4 - Prob. 4.8PCh. 4 - Radioactive wastes are temporarily stored in a...Ch. 4 - Based on the dimensionless conduction heat rates...
Ch. 4 - Prob. 4.11PCh. 4 - A two-dimensional object is subjected to...Ch. 4 - Prob. 4.13PCh. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - Prob. 4.16PCh. 4 - Pressurized steam at 450 K flows through a long,...Ch. 4 - Prob. 4.19PCh. 4 - A furnace of cubical shape, with external...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - Prob. 4.25PCh. 4 - A cubical glass melting furnace has exterior...Ch. 4 - Prob. 4.27PCh. 4 - An aluminum heat sink k=240W/mK, used to coolan...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Consider the thin integrated circuit (chip) of...Ch. 4 - Prob. 4.35PCh. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Determine expressions for...Ch. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Consider a one-dimensional fin of uniform...Ch. 4 - Prob. 4.50PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Prob. 4.58PCh. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures C associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.64PCh. 4 - Consider a long bar of square cross section (0.8 m...Ch. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Consider using the experimental methodology of...Ch. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Spheres A and B arc initially at 800 K, and they...Ch. 4 - Spheres of 40-mm diameter heated to a uniform...Ch. 4 - To determine which parts of a spiders brain are...Ch. 4 - Prob. 4.84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- just aarrow_forwardHi, kindly solve this problem and show the solution. Thank youarrow_forwardAfter a thorough derivation by Doraemon to establish an equation for cylindrical fuel rod of a nuclear reactor. Here he was able to come up an equation of heat generated internally as shown below. 9G = 9. where qG is the local rate of heat generation per unit volume at radius r, ro is the outside radius, and qo is the rate of heat generation per unit volume at the centre line. Calculate the temperature drop from the centre line to the surface for a 2.5 cm outer diameter rod having k = 25 W/m K, if the rate of heat removal from the surface is 1650 kW/m² А) 619°C В 719 °C C) 819 °C D) 919 °C E 1019 °C F None of thesearrow_forward
- Nuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rodarrow_forwardSolve for interface temperatures. Given: heat transfer due to radiation= 507.415 W/m2arrow_forwardAnswer correctly and quickly as possible please.arrow_forward
- can you please work this out step by step please and do everythingarrow_forwardc) A steel pipe of 100 mm bore, and 10 mm bore thickness, carrying dry saturated steam at 28 bars, is insulated with a 40 mm layer of moulded insulation. This insulation in turn is insulated with a 60 mm layer of felt. The atmospheric temperature is 15 °C. Calculate: (i) the rate of heat loss by the steam per metre pipe length. (ii) the temperature of the outside Dimensions in mm surface.zzzzzzz h₂-15 W/m²K Steel k₁=50 W/mK AVALEHT Ø100 1₂ " Steam 28 bar h-550 W/m²K, Inner heat transfer coefficient = 550 W/m² K Outer heat transfer coefficient = 15 W/m² K Thermal conductivity of steel = 50 W/m K Thermal conductivity of felt = 0.07 W/m K Moulded insulation Felt Moulded insulation K₂=0.09 W/mK Thermal conductivity of moulded insulation = 0.09 W/m 40 10. A 60 15°C Felt K₁=0.07 W/mK zzzzzzzzarrow_forwardA mechanic needs to remove a tight fitting pin of material A from a hole in a block made of material B. The machinist heats both the pin and the block to the same high temperature and removes the pin easily. What statement relates the coefficient of thermal expansion of material A to that of material B?arrow_forward
- Let's say a 3.0 gram copper wafer is dropped from a height of 50.0 meters. If 60% of the potential energy lost in the drop could be converted to thermal energy used to heat the copper from an initial temperature of 25 degrees celsius, what would the final temperature of the copper wafer? Would the answer be different if the wafer has a mass greater than 3 grams? Note: the specific heat of copper is 387 J/(kg*K). The temperature is between 25.8 and 26.0 degrees celsius, yes the bigger the mass the greater the energy. O The temperature is between 25.6 and 25.8 celsius, answer does not depend on mass. O The temperature is between 25.0 and 25.2 celsius, answer does not depend on mass. O The temperature is 25.5 and of course the more mass something has the greater energy will be needed to raise the temperature. The temperature is 26.2 and if the mass is doubled so will be the change in temperature. O The temperature is 25.9 degrees celsius and the answer does not depend on mass. O The…arrow_forwardI have a problem similar to this in my case the problem is from the outside in. the heat is entering the interior and I don't know what temperature it will have inside since part of the heat will be lost in the thickness of the cylinder, I want to know how to fix the formula so that I can obtain the temperature inside the cylinder.arrow_forwardFind the interface temperatures of the layers,ASAParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license