
Concept explainers
In Problems 13-20, a linear function is given.
a. Determine the slope and of each Junction.
b. Use the slope and to graph the linear function.
c. Determine the average rate of change of each function.
d. Determine whether the linear function is increasing, decreasing, or constant.

To calculate:
a. Slope and the of the given function.
Answer to Problem 16AYU
Solution:
a. The slope is and is 6.
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
a. From the definition of the linear function, the slope of the given function is and 6 is the .

To calculate:
b. Use (a. and graph the given function.
Answer to Problem 16AYU
Solution:
b. The graph is as shown below:
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
b. The graph of the given function is

To calculate:
c. Average rate of change of the given function.
Answer to Problem 16AYU
Solution:
c. Average rate of change of the given function is .
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
c. The average rate of change of the given function is .

To calculate:
d. Determine whether the function is increasing, decreasing or constant.
Answer to Problem 16AYU
Solution:
d. The function is decreasing.
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
d. Since the slope of the given function is negative, the function is decreasing.
Chapter 3 Solutions
Precalculus Enhanced with Graphing Utilities
Additional Math Textbook Solutions
Pre-Algebra Student Edition
Elementary Statistics
Introductory Statistics
Elementary Statistics: Picturing the World (7th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
A First Course in Probability (10th Edition)
- 4.2 Product and Quotient Rules 1. 9(x)=125+1 y14+2 Use the product and/or quotient rule to find the derivative of each function. a. g(x)= b. y (2x-3)(x-1) c. y== 3x-4 √xarrow_forward4.2 Product and Quotient Rules 1. Use the product and/or quotient rule to find the derivative of each function. 2.5 a. g(x)=+1 y14+2 √x-1) b. y=(2x-3)(x-:arrow_forward3. The total profit (in dollars) from selling x watches is P(x)=0.52x²-0.0002x². Find and interpret the following. a) P(100) b) P'(100)arrow_forward
- 3. Find the slope and the equation of the tangent line to the graph of the given function at the given value of x. -4 f(x)=x-x³;x=2arrow_forward2. Find the equation of the tangent line to the graph of the given function at the given point. f(x)=(x+3)(2x²-6) at (1,-16)arrow_forward6. Researchers who have been studying the alarming rate at which the level of the Dead Sea has been dropping have shown that the density d (x) (in g per cm³) of the Dead Sea brine during evaporation can be estimated by the function d(x)=1.66 0.90x+0.47x², where x is the fraction of the remaining brine, 0≤x≤1. a) Estimate the density of the brine when 60% of the brine remains. b) Find and interpret the instantaneous rate of change of the density when 60% of the brine remains.arrow_forward
- 5. If g'(5) 10 and h'(5)=-4, find f'(5) for f(x)=4g(x)-2h(x)+3.arrow_forward2. Find each derivative. Write answers with positive exponents. a) Dx 9x -3 [97] b) f'(3) if f(x) = x²-5x² 8arrow_forwardA ladder 27 feet long leans against a wall and the foot of the ladder is sliding away at a constant rate of 3 feet/sec. Meanwhile, a firefighter is climbing up the ladder at a rate of 2 feet/sec. When the firefighter has climbed up 6 feet of the ladder, the ladder makes an angle of л/3 with the ground. Answer the two related rates questions below. (Hint: Use two carefully labeled similar right triangles.) (a) If h is the height of the firefighter above the ground, at the instant the angle of the ladder with the ground is л/3, find dh/dt= feet/sec. (b) If w is the horizontal distance from the firefighter to the wall, at the instant the angle of the ladder with the ground is л/3, find dw/dt= feet/sec.arrow_forward
- Two cars start moving from the same point. One travels south at 60 mi/h and the other travels west at 25 mi/h. At what rate (in mi/h) is the distance between the cars increasing four hours later? Step 1 Using the diagram of a right triangle given below, the relation between x, y, and z is z² = x²+ +12 x Step 2 We must find dz/dt. Differentiating both sides and simplifying gives us the following. 2z dz dt dx 2x. +2y dt dx dy dz x +y dt dt dt 2z dy dt × dx (x+y dt dy dtarrow_forwardAn elastic rope is attached to the ground at the positions shown in the picture. The rope is being pulled up along the dotted line. Assume the units are meters. 9 ground level Assume that x is increasing at a rate of 3 meters/sec. (a) Write as a function of x: 0= (b) When x=10, the angle is changing at a rate of rad/sec. (c) Let L be the the left hand piece of rope and R the right hand piece of rope. When x=10, is the rate of change of L larger than the rate of change of R? ○ Yes ○ Noarrow_forward4.1 Basic Rules of Differentiation. 1. Find the derivative of each function. Write answers with positive exponents. Label your derivatives with appropriate derivative notation. a) y=8x-5x3 4 X b) y=-50 √x+11x -5 c) p(x)=-10x²+6x3³arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





