![Precalculus Enhanced with Graphing Utilities](https://www.bartleby.com/isbn_cover_images/9780321795465/9780321795465_largeCoverImage.gif)
Concept explainers
In Problems 13-20, a linear function is given.
a. Determine the slope and of each Junction.
b. Use the slope and to graph the linear function.
c. Determine the average rate of change of each function.
d. Determine whether the linear function is increasing, decreasing, or constant.
![Check Mark](/static/check-mark.png)
To find:
(a. The Slope and the of the given function.
Answer to Problem 13AYU
Solution:
(a. The slope is 2 and is 3.
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
(a. From the definition of the linear function, .
Compare the given function with linear function, we get .
The slope of the given function is 2 and 3 is the .
![Check Mark](/static/check-mark.png)
To find:
(b. Use (a. and graph the given function.
Answer to Problem 13AYU
Solution:
(b. The graph is as shown below:
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
(b. The graph of the given function is
![Check Mark](/static/check-mark.png)
To find:
(c. Average rate of change of the given function.
Answer to Problem 13AYU
Solution:
(c. Average rate of change of the given function is 2.
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
(c.The average rate of change of the given function is 2.
![Check Mark](/static/check-mark.png)
To find:
(d. Determine whether the function is increasing, decreasing or constant.
Answer to Problem 13AYU
Solution:
(d. The function is increasing.
Explanation of Solution
Given:
The given equation is .
Formula used:
For a linear function of the form , is the slope and is the .
The average rate of change of the linear function is the slope of that function.
The function is said to be increasing in it domain, then its slope is positive.
The function is said to be decreasing in it domain, then its slope is negative.
The function is said to be constant if the slope is 0.
Calculation:
(d. Since the slope of the given function is positive, . Therefore, the function is increasing.
Chapter 3 Solutions
Precalculus Enhanced with Graphing Utilities
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Basic Business Statistics, Student Value Edition
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
Introductory Statistics
Algebra and Trigonometry (6th Edition)
- Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below. Let g(x) = √ƒƒ(t) dt . 0 3 2 -2 2 4 5 6 7 8 9 10 11 12 13 14 15 1. g(0) = 2. g(2) = 3. g(4) = 4. g(6) = 5. g'(3) = 6. g'(13)=arrow_forwardThe expression 3 | (3+1/+1) of the following integrals? A Ов E + + + + 18 3+1+1 3++1 3++1 (A) √2×14 dx x+1 (C) 1½-½√ √ ² ( 14 ) d x (B) √31dx (D) So 3+x -dx is a Riemann sum approximation of which 5 (E) 1½√√3dx 2x+1arrow_forward2. Suppose the population of Wakanda t years after 2000 is given by the equation f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000 people? Show all your work, round your answer to two decimal places, and include units. (4 points)arrow_forward
- 3. Solve the equation, give the answer exactly (no calculator approximations), and show all your work. (4 points) log5 2x = 3arrow_forwardLet I = f(x) dx, where f is the function whose graph is shown. 4 2 y f X 1 2 3 4 (a) Use the graph to find L2, R2 and M2. R₂ M2 = = = (b) Are these underestimates or overestimates of I? O 42 is an underestimate. O 42 is an overestimate. ◇ R2 is an underestimate. OR2 is an overestimate. OM2 is an underestimate. ○ M2 is an overestimate. (c) Use the graph to find T2. T₂ =arrow_forwardVector u has a magnitude of 23 and vector v has a magnitude of 83. The angle between the two vectors is 126 degrees.a) Draw a fully-labelled vector diagram showing the two vectors and the resultant vector when they are added together.b) Find the magnitude of the resultant vector.c) Find the direction of the resultant vector relative to vector u. Solding by finding the x and y of the vectors and addingarrow_forward
- 3) If a is a positive number, what is the value of the following double integral? 2a Love Lv 2ay-y² .x2 + y2 dadyarrow_forward16. Solve each of the following equations for x. (a) 42x+1 = 64 (b) 27-3815 (c) 92. 27² = 3-1 (d) log x + log(x - 21) = 2 (e) 3 = 14 (f) 2x+1 = 51-2xarrow_forward11. Find the composition fog and gof for the following functions. 2 (a) f(x) = 2x+5, g(x) = x² 2 (b) f(x) = x²+x, g(x) = √√x 1 (c) f(x) = -1/2) 9 9(x) = х = - Xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)