
Concept explainers
Answer Problems 83 and 84 using the following: A quadratic function of the form with may also be written in the form , where are the of the graph of the quadratic function.
(a) Find a quadratic function whose are and 3 with .
(b) How does the value of affect the intercepts?
(c) How does the value of affect the axis of symmetry?
(d) How does the value of affect the vertex?
(e) Compare the of the vertex with the midpoint of the . What might you conclude?

a. The quadratic function whose is given.
b. How does the value affect the intercepts?
c. How does the value of affect the axis of symmetry?
d. How does the value of affect the vertex?
e. Compare the of the vertex with the midpoint of the . What might we conclude?
Answer to Problem 84AYU
a.
When , we have
When , we have
When , we have
When , we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Explanation of Solution
Given:
The of the function are and 3.
Formula used:
A quadratic equation of the form can also be written as where and is the of the graph of the quadratic function.
Axis of symmetry is
Vertex is at
The is found by solving the equation at .
Calculation:
a. The given quadratic function is
Case 1:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 2:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 3:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
Case 4:
When , we have
Here, we get
Axis of symmetry is
Thus, we have
Vertex is at .
The is found by solving the equation at .
Thus, we have
b. We can see that the value of does not affect the intercepts.
c. The value of does not affect the axis of symmetry.
d. As the value of increases the -value of vertex is decreasing times (when compared with the quadratic function at ).
e. The midpoint of the given is at . We can see that the of the vertex is same as the midpoint of the . Thus, we can conclude that the of the vertex and the axis of symmetry are all same as the midpoint of the of the function.
Chapter 3 Solutions
Precalculus Enhanced with Graphing Utilities
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Evaluate the triple integral 3' 23 HIG 2 +3 f(x, y, z)dxdydz where f(x, y, z) = x + 2x-y ม u = v = and w = 2 2 3 Triple Integral Region R -2 x N 2 y 3arrow_forwardFind the volume of the solid bounded below by the circular cone z = 2.5√√√x² + y² and above by the sphere x² + y²+z² = 6.5z.arrow_forwardElectric charge is distributed over the triangular region D shown below so that the charge density at (x, y) is σ(x, y) = 4xy, measured in coulumbs per square meter (C/m²). Find the total charge on D. Round your answer to four decimal places. 1 U 5 4 3 2 1 1 2 5 7 coulumbsarrow_forward
- Let E be the region bounded cone z = √√/6 - (x² + y²) and the sphere z = x² + y² + z² . Provide an answer accurate to at least 4 significant digits. Find the volume of E. Triple Integral Spherical Coordinates Cutout of sphere is for visual purposes 0.8- 0.6 z 04 0.2- 0- -0.4 -0.2 04 0 0.2 0.2 x -0.2 04 -0.4 Note: The graph is an example. The scale and equation parameters may not be the same for your particular problem. Round your answer to 4 decimal places. Hint: Solve the cone equation for phi. * Oops - try again.arrow_forwardThe temperature at a point (x,y,z) of a solid E bounded by the coordinate planes and the plane 9.x+y+z = 1 is T(x, y, z) = (xy + 8z +20) degrees Celcius. Find the average temperature over the solid. (Answer to 4 decimal places). Average Value of a function using 3 variables z 1- y Hint: y = -a·x+1 * Oops - try again. xarrow_forwardFind the saddle pointsarrow_forward
- For the curve defined by r(t) = (e** cos(t), et sin(t)) find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at t = πT 3 T (1) N Ň (1) 133 | aN = 53 ar = = =arrow_forwardFind the tangential and normal components of the acceleration vector for the curve - F(t) = (2t, −3t³, −3+¹) at the point t = 1 - ā(1) = T + Ñ Give your answers to two decimal placesarrow_forwardFind the unit tangent vector to the curve defined by (t)=(-2t,-4t, √√49 - t²) at t = −6. T(−6) =arrow_forward
- An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane? 428 mph 41° 50 mph a. The ground speed of the airplane is b. The bearing of the airplane is mph. south of west.arrow_forwardRylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude and its direction angle from the positive x-axis. 119 lb 20.2° 377 lb a. The resultant force is (Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°)) b. It's magnitude is lb. c. It's angle from the positive x-axis isarrow_forwardFind a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14 and -3x - y + z = −21. The equation of the plane is:arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





