Concept explainers
(a)
Interpretation:
Whether the occurrence of two different dehydrogenation reactions is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this
(b)
Interpretation:
Whether the breakdown of a molecule into two parts is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(c)
Interpretation:
Whether the occurrence of a hydrolysis reaction is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(d)
Interpretation:
Whether the occurrence of a hydration reaction is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
General, Organic, and Biological Chemistry
- Please correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward
- CaTiO3 has a perovskite structure. Calculate the packing factor.Data: ionic radii Co+2 = 0.106 nm, Ti+4 = 0.064 nm, O-2 = 0.132 nm; lattice constant is a = 2(rTi4+ + rO-2).(a) 0.581(b) -0.581(c) 0.254(d) -0.254arrow_forwardIn the initial linear section of the stress-strain curve of a metal or alloy. Explain from the point of view of atomic structure?(a) No, the atomic level properties of the material can never be related to the linear section.(b) The elastic zone is influenced by the strength of the bonds between atoms.(c) The stronger the bond, the less rigid and the lower the Young's Modulus of the material tested.(d) The stronger the bond, the less stress is necessary to apply to the material to deform it elastically.arrow_forwardThe degree of polymerization of polytetrafluoroethylene (Teflon) is 7500 (mers/mol). If all polymer chains have equal length, state the molecular weight of the polymer and the total number of chains in 1000 g of the polymer(a) 50 000 g/mol; 0.03·1020 chains(b) 100 000 g/mol; 1.03·1020 chains(c) 750 000 g/mol; 8.03·1020 chainsarrow_forward
- In natural rubber or polyisoprene, the trans isomer leads to a higher degree of crystallinity and density than the cis isomer of the same polymer, because(a) it is more symmetrical and regular.(b) it is less symmetrical.(c) it is irregular.arrow_forwardMost ceramic materials have low thermal conductivities because:(a) Electron mobility is strongly restricted due to their strong ionic-covalent bonding.(b) False, in general they are excellent thermal conductors (they are used in ovens).(c) Electron mobility is dependent on T and therefore they are poor conductors at high temperatures.(d) Electron mobility is very restricted by secondary bonds.arrow_forwardResistivity and electrical conductivity.(a) In metals, resistivity decreases.(b) In metals, resistivity decreases and conductivity in semiconductors also decreases with increasing temperature.(c) With increasing temperature, resistivity in metals and conductivity in semiconductors also increases.(d) None of the above.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,