
Concept explainers
(a)
Interpretation:
Whether the compound ketoacyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, or (3) both the β-oxidation pathway and ketogenesis has to be identified.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules.
The β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acetyl CoA chains into smaller fatty acetyl CoA chains. The fatty acid chain is broken down until the final acetyl CoA chain cannot be broken down any further. The end products of this
(b)
Interpretation:
Whether the compound acetoacetyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, or (3) both the β-oxidation pathway and ketogenesis has to be identified.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acetyl CoA chains into smaller fatty acetyl CoA chains. The fatty acid chain is broken down until the final acetyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(c)
Interpretation:
Whether the compound acetoacetate is associated with (1) the β-oxidation pathway, (2) ketogenesis, or (3) both the β-oxidation pathway and ketogenesis has to be identified.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acetyl CoA chains into smaller fatty acetyl CoA chains. The fatty acid chain is broken down until the final acetyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.
(d)
Interpretation:
Whether the compound hydroxyacyl CoA is associated with (1) the β-oxidation pathway, (2) ketogenesis, or (3) both the β-oxidation pathway and ketogenesis has to be identified.
Concept introduction:
Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.
β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.

Want to see the full answer?
Check out a sample textbook solution
Chapter 25 Solutions
General, Organic, and Biological Chemistry
- Indicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forwardThe molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forwardWhat does the phrase mean, if instead of 1 Faraday of electricity, Q coulombs (Q/F Faradays) pass through?arrow_forward
- What characteristics should an interface that forms an electrode have?arrow_forwardFor a weak acid AcH, calculate the dissociated fraction (alpha), if its concentration is 1.540 mol L-1 and the concentration [H+] is 5.01x10-4 mol L-1.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forward
- If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardDetermine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forward
- Describe a sequence of photophysical processes that can be followed by radiation adsorbed by a molecule in the ground state to give rise to phosphorescent emission.arrow_forwardState two similarities between fluorescence and phosphorescence.arrow_forwardState three photophysical processes that can be related to the effects of incident radiation on a molecule in its ground state. Consider that radiation can give rise to fluorescent emission, but not phosphorescent emission.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning




