![General, Organic, and Biological Chemistry](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Whether or not cholesterol produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Cholesterol is an important component of cell membranes. It is used as the precursor for sex hormones, bile salts, and adrenal hormones. The biosynthesis of cholesterol occurs in the liver. It is a C27 molecule. The structure of cholesterol is as follows:
(b)
Interpretation:
Whether or not acetoacetyl CoA produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Ketogenesis is a
cleavage and hydrogenation to produce ketone bodies.
(c)
Interpretation:
Whether or not malonyl CoA produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as theβ-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid.
A cyclic process occurs in the enzyme fatty acid synthase. One turn of this cyclic process
constitutes four reactions. The various intermediates formed in the process are associated
with a carrier protein known as ACP.
(d)
Interpretation:
Whether or not pyruvate produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Pyruvate is the end product in the glycolysis. In the presence of oxygen, pyruvate is converted to acetyl CoA by the involvement of pyruvate dehydrogenase complex enzymes in the human body.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 25 Solutions
General, Organic, and Biological Chemistry
- H HgSO4, H2O H2SO4arrow_forward12. Choose the best diene and dienophile pair that would react the fastest. CN CN CO₂Et -CO₂Et .CO₂Et H3CO CO₂Et A B C D E Farrow_forward(6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forward
- Nonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forwardPlease explain thoroughly and provide steps to draw.arrow_forward
- As you can see in the picture, the instrument uses a Xe source. Given that the instrument is capable of measuring from 200-800nm, if Xe was not used, what other source(s) could be used? Refer to figure 7-3. How many monochrometers does this instrument have? Why? Trace the light as it goes from the Xenon lamp all the way to the circle just slightly to the right and a little bit down from S4. What do you think that circle is? In class we talked about many types of these, which kind do you think this one is for a fluorimeter? Why? Explain. What is/are some strategy(ies) that this instrument has for dealing with noise that you see present in the optics diagram? Why does a fluorescence cuvette have to be clear on four sides?arrow_forwardProvide steps and thoroughly solve.arrow_forwardNonearrow_forward
- Devise a synthesis to prepare 4-tert-butyl-2-nitrotoluene from toluene. Complete the following reaction scheme. Part 1 of 4 Step 1 Step 2 A B Draw the structure for compound B, 4-tert-butyl-2-nitrotoluene. Click and drag to start drawing a structure. 'O Х ப:arrow_forwardWhat is N hybridized? sp3 or sp2? whyarrow_forwardDate Unknown o Hydrated Salt Lab Sec. Name Trial I Trial 2 1. Mass of fired crucible and lid (g) 2. Mass of fired crucible, lid, and hydrated sah (g) 3. Instructor's approval of flame and apparatus 4. Mass of crucible, lid, and anhydrous salt Ist mass measurement (g) 2nd mass measurement (g) 3rd mass measurement (g). Desk No. Trial 3 48.833 46.808 213.692 51.507 9.359 46,615 50.296 48.211 45.351 50.142 48.146 45.1911 50.103 48.132 45.186 5. Final mass of crucible, lid, and anhydrous salt (g) 50.180 4.13 45.243 Calculations 1. Mass of hydrated salt (g) 2. Mass of anhydrous salt (g) 2.674 2.491 2.9239 1.3479 1.2959 1.5519 3. Mass of water lost (g) 1.32791969 1.322g 4. Percent by mass of volatile water in hydrated salt (%) 49.6% 48% 216.9% 5. Average percent HO in bydrated salt (%H,O) 5. Standard deviation of %H,O Relative standard deviation of %H,O in hydrated salt (RSD) how calculations on next page. 48.17% Data Analysis, B Data Analysis, C Data Analysis, D Experiment 5 89arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084476/9781305084476_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080485/9781305080485_smallCoverImage.gif)