
(a)
Interpretation:
Common name for four-carbon monocarboxylic acid has to be given.
Concept Introduction:
In
Common name for monocarboxylic acid is formed by taking Greek or Latin root name for the number of carbon atom that is appended by suffix “ic acid”
(b)
Interpretation:
Common name for three-carbon monocarboxylic acid has to be given.
Concept Introduction:
In organic chemistry compounds are given common names also apart from IUPAC names. Common names are derived from the Greek-letter system. This is used in numbering of the carbon atoms in a carbon chain. Common names are also derived from the Greek or Latin word that represents the source of the acid.
Common name for monocarboxylic acid is formed by taking Greek or Latin root name for the number of carbon atom that is appended by suffix “ic acid”
(c)
Interpretation:
Common name for four-carbon dicarboxylic acid has to be given.
Concept Introduction:
In organic chemistry compounds are given common names also apart from IUPAC names. Common names are derived from the Greek-letter system. This is used in numbering of the carbon atoms in a carbon chain. Common names are also derived from the Greek or Latin word that represents the source of the acid.
Common name for monocarboxylic acid is formed by taking Greek or Latin root name for the number of carbon atom that is appended by suffix “ic acid”
(d)
Interpretation:
Common name for three-carbon dicarboxylic acid has to be given.
Concept Introduction:
In organic chemistry compounds are given common names also apart from IUPAC names. Common names are derived from the Greek-letter system. This is used in numbering of the carbon atoms in a carbon chain. Common names are also derived from the Greek or Latin word that represents the source of the acid.
Common name for monocarboxylic acid is formed by taking Greek or Latin root name for the number of carbon atom that is appended by suffix “ic acid”

Want to see the full answer?
Check out a sample textbook solution
Chapter 16 Solutions
General, Organic, and Biological Chemistry
- Molecules of the form AH2 can exist in two potential geometries: linear or bent. Construct molecular orbital diagrams for linear and bent CH2. Identify the relevant point group, include all of the appropriate symmetry labels and pictures, and fill in the electrons. Which geometry would you predict to be more stable, and why? (Please draw out the diagram and explain)arrow_forwardIndicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forwardThe molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forward
- What does the phrase mean, if instead of 1 Faraday of electricity, Q coulombs (Q/F Faradays) pass through?arrow_forwardWhat characteristics should an interface that forms an electrode have?arrow_forwardFor a weak acid AcH, calculate the dissociated fraction (alpha), if its concentration is 1.540 mol L-1 and the concentration [H+] is 5.01x10-4 mol L-1.arrow_forward
- If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forward
- Determine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forwardDescribe a sequence of photophysical processes that can be followed by radiation adsorbed by a molecule in the ground state to give rise to phosphorescent emission.arrow_forwardState two similarities between fluorescence and phosphorescence.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,



